摘要:生成對抗網絡的各種變體非常多,的發明者在上推薦了這份名為的各種變體列表,這也表明現在確實非常火,被應用于各種各樣的任務。了解這些各種各樣的,或許能對你創造自己的有所啟發。這篇文章列舉了目前出現的各種變體,并將長期更新。
生成對抗網絡(GAN)的各種變體非常多,GAN 的發明者 Ian Goodfellow 在Twitter上推薦了這份名為“The GAN Zoo”的各種GAN變體列表,這也表明現在GAN確實非?;穑粦糜诟鞣N各樣的任務。了解這些各種各樣的GAN,或許能對你創造自己的 X-GAN有所啟發。
幾乎每周都有新的關于生成對抗網絡(GAN)的論文出現,而且你很難跟蹤到它們,因為研究者為這些 GAN 命名的方式非常具有創造性。了解有關 GAN 的更多信息,可以參考 OpenAI 博客的一份非常全面的 GAN 綜述文章(地址:https://blog.openai.com/generative-models/),或閱讀王飛躍等人的 GAN 綜述文章。
這篇文章列舉了目前出現的各種GAN變體,并將長期更新。這是一個開源的項目,你也可以通過 pull request 添加作者沒有注意到的 GAN,
GitHub 地址:https://github.com/hindupuravinash/the-gan-zoo
這份列表的形式是:名稱——論文標題(論文均發表在Arxiv,也可在深度學習世界公眾號回復【變體論文】下載)。
GAN?—?Generative Adversarial Networks
3D-GAN?—?Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
AdaGAN?—?AdaGAN: Boosting Generative Models
AffGAN?—?Amortised MAP Inference for Image Super-resolution
ALI?—?Adversarially Learned Inference
AMGAN?—?Generative Adversarial Nets with Labeled Data by Activation Maximization
AnoGAN?—?Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
ArtGAN?—?ArtGAN: Artwork Synthesis with Conditional Categorial GANs
b-GAN?—?b-GAN: Unified Framework of Generative Adversarial Networks
Bayesian GAN?—?Deep and Hierarchical Implicit Models
BEGAN?—?BEGAN: Boundary Equilibrium Generative Adversarial Networks
BiGAN?—?Adversarial Feature Learning
BS-GAN?—?Boundary-Seeking Generative Adversarial Networks
CGAN?—?Towards Diverse and Natural Image Descriptions via a Conditional GAN
CCGAN?—?Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
CatGAN?—?Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
CoGAN?—?Coupled Generative Adversarial Networks
Context-RNN-GAN?—?Contextual RNN-GANs for Abstract Reasoning Diagram Generation
C-RNN-GAN?—?C-RNN-GAN: Continuous recurrent neural networks with adversarial training
CVAE-GAN?—?CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
CycleGAN?—?Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
DTN?—?Unsupervised Cross-Domain Image Generation
DCGAN?—?Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DiscoGAN?—?Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
DualGAN?—?DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
EBGAN?—?Energy-based Generative Adversarial Network
f-GAN?—?f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
GoGAN?—?Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
GP-GAN?—?GP-GAN: Towards Realistic High-Resolution Image Blending
IAN?—?Neural Photo Editing with Introspective Adversarial Networks
iGAN?—?Generative Visual Manipulation on the Natural Image Manifold
IcGAN?—?Invertible Conditional GANs for image editing
ID-CGAN — Image De-raining Using a Conditional Generative Adversarial Network
Improved GAN?—?Improved Techniques for Training GANs
InfoGAN?—?InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
LR-GAN?—?LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation
LSGAN?—?Least Squares Generative Adversarial Networks
LS-GAN?—?Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities
MGAN?—?Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
MAGAN?—?MAGAN: Margin Adaptation for Generative Adversarial Networks
MalGAN?—?Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN
MARTA-GAN?—?Deep Unsupervised Representation Learning for Remote Sensing Images
McGAN?—?McGan: Mean and Covariance Feature Matching GAN
MedGAN?—?Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks
MIX+GAN?—?Generalization and Equilibrium in Generative Adversarial Nets (GANs)
MPM-GAN?—?Message Passing Multi-Agent GANs
MV-BiGAN?—?Multi-view Generative Adversarial Networks
pix2pix?—?Image-to-Image Translation with Conditional Adversarial Networks
PPGN?—?Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
PrGAN?—?3D Shape Induction from 2D Views of Multiple Objects
RenderGAN?—?RenderGAN: Generating Realistic Labeled Data
RTT-GAN?—?Recurrent Topic-Transition GAN for Visual Paragraph Generation
SGAN?—?Stacked Generative Adversarial Networks
SGAN?—?Texture Synthesis with Spatial Generative Adversarial Networks
SAD-GAN?—?SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks
SalGAN?—?SalGAN: Visual Saliency Prediction with Generative Adversarial Networks
SEGAN?—?SEGAN: Speech Enhancement Generative Adversarial Network
SeqGAN?—?SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
SketchGAN?—?Adversarial Training For Sketch Retrieval
SL-GAN?—?Semi-Latent GAN: Learning to generate and modify facial images from attributes
SRGAN?—?Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
S2GAN?—?Generative Image Modeling using Style and Structure Adversarial Networks
SSL-GAN?—?Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
StackGAN?—?StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
TGAN?—?Temporal Generative Adversarial Nets
TAC-GAN?—?TAC-GAN?—?Text Conditioned Auxiliary Classifier Generative Adversarial Network
TP-GAN?—?Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis
Triple-GAN?—?Triple Generative Adversarial Nets
VGAN?—?Generative Adversarial Networks as Variational Training of Energy Based Models
VAE-GAN?—?Autoencoding beyond pixels using a learned similarity metric
ViGAN?—?Image Generation and Editing with Variational Info Generative AdversarialNetworks
WGAN?—?Wasserstein GAN
WGAN-GP?—?Improved Training of Wasserstein GANs
WaterGAN?—?WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images
原文地址:https://deephunt.in/the-gan-zoo-79597dc8c347
歡迎加入本站公開興趣群商業智能與數據分析群
興趣范圍包括各種讓數據產生價值的辦法,實際應用案例分享與討論,分析工具,ETL工具,數據倉庫,數據挖掘工具,報表系統等全方位知識
QQ群:81035754
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。
轉載請注明本文地址:http://specialneedsforspecialkids.com/yun/4518.html
摘要:二是精度查全率和得分,用來衡量判別式模型的質量。精度查全率和團隊還用他們的三角形數據集,測試了樣本量為時,大范圍搜索超參數來進行計算的精度和查全率。 從2014年誕生至今,生成對抗網絡(GAN)熱度只增不減,各種各樣的變體層出不窮。有位名叫Avinash Hindupur的國際友人建立了一個GAN Zoo,他的動物園里目前已經收集了多達214種有名有姓的GAN。DeepMind研究員們甚至將...
摘要:也是相關的,因為它們已經成為實現和使用的主要基準之一。在本文發表之后不久,和中有容易獲得的不同實現用于測試你所能想到的任何數據集。在這篇文章中,作者提出了對訓練的不同增強方案。在這種情況下,鑒別器僅用于指出哪些是值得匹配的統計信息。 本文不涉及的內容首先,你不會在本文中發現:復雜的技術說明代碼(盡管有為那些感興趣的人留的代碼鏈接)詳盡的研究清單(點擊這里進行查看 鏈接:http://suo....
摘要:近日,英國小哥在上圖解了一系列生成式對抗網和變分自編碼器的實現。 近日,英國小哥Pawel.io在GitHub上圖解了一系列生成式對抗網(GAN)和變分自編碼器(VAE)的TensorFlow實現。生成式對抗網絡(GAN)GAN論文地址:https://arxiv.org/abs/1406.2661價值函數:結構圖:LSGAN論文地址:https://arxiv.org/abs/1611.0...
摘要:近日,谷歌大腦發布了一篇全面梳理的論文,該研究從損失函數對抗架構正則化歸一化和度量方法等幾大方向整理生成對抗網絡的特性與變體。他們首先定義了全景圖損失函數歸一化和正則化方案,以及最常用架構的集合。 近日,谷歌大腦發布了一篇全面梳理 GAN 的論文,該研究從損失函數、對抗架構、正則化、歸一化和度量方法等幾大方向整理生成對抗網絡的特性與變體。作者們復現了當前較佳的模型并公平地對比與探索 GAN ...
摘要:作者在論文中將這種新的譜歸一化方法與其他歸一化技術,比如權重歸一化,權重削減等,和梯度懲罰等,做了比較,并通過實驗表明,在沒有批量歸一化權重衰減和判別器特征匹配的情況下,譜歸一化改善生成的圖像質量,效果比權重歸一化和梯度懲罰更好。 就在幾小時前,生成對抗網絡(GAN)的發明人Ian Goodfellow在Twitter上發文,激動地推薦了一篇論文:Goodfellow表示,雖然GAN十分擅長...
閱讀 1203·2021-11-17 09:33
閱讀 3599·2021-09-28 09:42
閱讀 3326·2021-09-13 10:35
閱讀 2478·2021-09-06 15:00
閱讀 2438·2021-08-27 13:12
閱讀 3609·2021-07-26 23:38
閱讀 1826·2019-08-30 15:55
閱讀 539·2019-08-30 15:53