国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

GAN動物園——GAN的各種變體列表

tianyu / 4223人閱讀

摘要:生成對抗網絡的各種變體非常多,的發明者在上推薦了這份名為的各種變體列表,這也表明現在確實非常火,被應用于各種各樣的任務。了解這些各種各樣的,或許能對你創造自己的有所啟發。這篇文章列舉了目前出現的各種變體,并將長期更新。

生成對抗網絡(GAN)的各種變體非常多,GAN 的發明者 Ian Goodfellow 在Twitter上推薦了這份名為“The GAN Zoo”的各種GAN變體列表,這也表明現在GAN確實非?;穑粦糜诟鞣N各樣的任務。了解這些各種各樣的GAN,或許能對你創造自己的 X-GAN有所啟發。

幾乎每周都有新的關于生成對抗網絡(GAN)的論文出現,而且你很難跟蹤到它們,因為研究者為這些 GAN 命名的方式非常具有創造性。了解有關 GAN 的更多信息,可以參考 OpenAI 博客的一份非常全面的 GAN 綜述文章(地址:https://blog.openai.com/generative-models/),或閱讀王飛躍等人的 GAN 綜述文章。

這篇文章列舉了目前出現的各種GAN變體,并將長期更新。這是一個開源的項目,你也可以通過 pull request 添加作者沒有注意到的 GAN,

GitHub 地址:https://github.com/hindupuravinash/the-gan-zoo

這份列表的形式是:名稱——論文標題(論文均發表在Arxiv,也可在深度學習世界公眾號回復【變體論文】下載)。

GAN?—?Generative Adversarial Networks

3D-GAN?—?Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

AdaGAN?—?AdaGAN: Boosting Generative Models

AffGAN?—?Amortised MAP Inference for Image Super-resolution

ALI?—?Adversarially Learned Inference

AMGAN?—?Generative Adversarial Nets with Labeled Data by Activation Maximization

AnoGAN?—?Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery

ArtGAN?—?ArtGAN: Artwork Synthesis with Conditional Categorial GANs

b-GAN?—?b-GAN: Unified Framework of Generative Adversarial Networks

Bayesian GAN?—?Deep and Hierarchical Implicit Models

BEGAN?—?BEGAN: Boundary Equilibrium Generative Adversarial Networks

BiGAN?—?Adversarial Feature Learning

BS-GAN?—?Boundary-Seeking Generative Adversarial Networks

CGAN?—?Towards Diverse and Natural Image Descriptions via a Conditional GAN

CCGAN?—?Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

CatGAN?—?Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks

CoGAN?—?Coupled Generative Adversarial Networks

Context-RNN-GAN?—?Contextual RNN-GANs for Abstract Reasoning Diagram Generation

C-RNN-GAN?—?C-RNN-GAN: Continuous recurrent neural networks with adversarial training

CVAE-GAN?—?CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

CycleGAN?—?Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

DTN?—?Unsupervised Cross-Domain Image Generation

DCGAN?—?Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

DiscoGAN?—?Learning to Discover Cross-Domain Relations with Generative Adversarial Networks

DualGAN?—?DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

EBGAN?—?Energy-based Generative Adversarial Network

f-GAN?—?f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

GoGAN?—?Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

GP-GAN?—?GP-GAN: Towards Realistic High-Resolution Image Blending

IAN?—?Neural Photo Editing with Introspective Adversarial Networks

iGAN?—?Generative Visual Manipulation on the Natural Image Manifold

IcGAN?—?Invertible Conditional GANs for image editing

ID-CGAN — Image De-raining Using a Conditional Generative Adversarial Network

Improved GAN?—?Improved Techniques for Training GANs

InfoGAN?—?InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

LR-GAN?—?LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation

LSGAN?—?Least Squares Generative Adversarial Networks

LS-GAN?—?Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities

MGAN?—?Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MAGAN?—?MAGAN: Margin Adaptation for Generative Adversarial Networks

MalGAN?—?Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN

MARTA-GAN?—?Deep Unsupervised Representation Learning for Remote Sensing Images

McGAN?—?McGan: Mean and Covariance Feature Matching GAN

MedGAN?—?Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks

MIX+GAN?—?Generalization and Equilibrium in Generative Adversarial Nets (GANs)

MPM-GAN?—?Message Passing Multi-Agent GANs

MV-BiGAN?—?Multi-view Generative Adversarial Networks

pix2pix?—?Image-to-Image Translation with Conditional Adversarial Networks

PPGN?—?Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space

PrGAN?—?3D Shape Induction from 2D Views of Multiple Objects

RenderGAN?—?RenderGAN: Generating Realistic Labeled Data

RTT-GAN?—?Recurrent Topic-Transition GAN for Visual Paragraph Generation

SGAN?—?Stacked Generative Adversarial Networks

SGAN?—?Texture Synthesis with Spatial Generative Adversarial Networks

SAD-GAN?—?SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks

SalGAN?—?SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SEGAN?—?SEGAN: Speech Enhancement Generative Adversarial Network

SeqGAN?—?SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient

SketchGAN?—?Adversarial Training For Sketch Retrieval

SL-GAN?—?Semi-Latent GAN: Learning to generate and modify facial images from attributes

SRGAN?—?Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

S2GAN?—?Generative Image Modeling using Style and Structure Adversarial Networks

SSL-GAN?—?Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

StackGAN?—?StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

TGAN?—?Temporal Generative Adversarial Nets

TAC-GAN?—?TAC-GAN?—?Text Conditioned Auxiliary Classifier Generative Adversarial Network

TP-GAN?—?Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis

Triple-GAN?—?Triple Generative Adversarial Nets

VGAN?—?Generative Adversarial Networks as Variational Training of Energy Based Models

VAE-GAN?—?Autoencoding beyond pixels using a learned similarity metric

ViGAN?—?Image Generation and Editing with Variational Info Generative AdversarialNetworks

WGAN?—?Wasserstein GAN

WGAN-GP?—?Improved Training of Wasserstein GANs

WaterGAN?—?WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images

原文地址:https://deephunt.in/the-gan-zoo-79597dc8c347

歡迎加入本站公開興趣群

商業智能與數據分析群

興趣范圍包括各種讓數據產生價值的辦法,實際應用案例分享與討論,分析工具,ETL工具,數據倉庫,數據挖掘工具,報表系統等全方位知識

QQ群:81035754

文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。

轉載請注明本文地址:http://specialneedsforspecialkids.com/yun/4518.html

相關文章

  • 那么多GAN哪個好?谷歌大腦潑來冷水:都和原版差不多

    摘要:二是精度查全率和得分,用來衡量判別式模型的質量。精度查全率和團隊還用他們的三角形數據集,測試了樣本量為時,大范圍搜索超參數來進行計算的精度和查全率。 從2014年誕生至今,生成對抗網絡(GAN)熱度只增不減,各種各樣的變體層出不窮。有位名叫Avinash Hindupur的國際友人建立了一個GAN Zoo,他的動物園里目前已經收集了多達214種有名有姓的GAN。DeepMind研究員們甚至將...

    張漢慶 評論0 收藏0
  • 一文幫你發現各種出色GAN變體

    摘要:也是相關的,因為它們已經成為實現和使用的主要基準之一。在本文發表之后不久,和中有容易獲得的不同實現用于測試你所能想到的任何數據集。在這篇文章中,作者提出了對訓練的不同增強方案。在這種情況下,鑒別器僅用于指出哪些是值得匹配的統計信息。 本文不涉及的內容首先,你不會在本文中發現:復雜的技術說明代碼(盡管有為那些感興趣的人留的代碼鏈接)詳盡的研究清單(點擊這里進行查看 鏈接:http://suo....

    qpal 評論0 收藏0
  • 多圖對比看懂GAN與VAE各種變體

    摘要:近日,英國小哥在上圖解了一系列生成式對抗網和變分自編碼器的實現。 近日,英國小哥Pawel.io在GitHub上圖解了一系列生成式對抗網(GAN)和變分自編碼器(VAE)的TensorFlow實現。生成式對抗網絡(GAN)GAN論文地址:https://arxiv.org/abs/1406.2661價值函數:結構圖:LSGAN論文地址:https://arxiv.org/abs/1611.0...

    yunhao 評論0 收藏0
  • 谷歌大腦發布GAN全景圖:看百家爭鳴生成對抗網絡

    摘要:近日,谷歌大腦發布了一篇全面梳理的論文,該研究從損失函數對抗架構正則化歸一化和度量方法等幾大方向整理生成對抗網絡的特性與變體。他們首先定義了全景圖損失函數歸一化和正則化方案,以及最常用架構的集合。 近日,谷歌大腦發布了一篇全面梳理 GAN 的論文,該研究從損失函數、對抗架構、正則化、歸一化和度量方法等幾大方向整理生成對抗網絡的特性與變體。作者們復現了當前較佳的模型并公平地對比與探索 GAN ...

    asoren 評論0 收藏0
  • 一個GAN生成ImageNet全部1000類物體

    摘要:作者在論文中將這種新的譜歸一化方法與其他歸一化技術,比如權重歸一化,權重削減等,和梯度懲罰等,做了比較,并通過實驗表明,在沒有批量歸一化權重衰減和判別器特征匹配的情況下,譜歸一化改善生成的圖像質量,效果比權重歸一化和梯度懲罰更好。 就在幾小時前,生成對抗網絡(GAN)的發明人Ian Goodfellow在Twitter上發文,激動地推薦了一篇論文:Goodfellow表示,雖然GAN十分擅長...

    huaixiaoz 評論0 收藏0

發表評論

0條評論

最新活動
閱讀需要支付1元查看
<