目標檢測技術作為計算機視覺的重要方向,被廣泛應用于自動駕駛汽車、智能攝像頭、人臉識別及大量有價值的應用上。這些系統除了可以對圖像中的每個目標進行識別、分類以外,它們還可以通過在該目標周圍繪制適當大小...
目前目標檢測領域的深度學習方法主要分為兩類:two stage的目標檢測算法;one stage的目標檢測算法。前者是先由算法生成一系列作為樣本的候選框,再通過卷積神經網絡進行樣本分類;后者則不用產生候選框,直接將目標邊框...
...大學電子工程系的研究人員共同參與的關于高效視覺目標檢測的研究已經被 CVPR 2017 接收。論文題目是 RON: Reverse Connection with Objectness Prior Networks for Object Detection。研究者包括孔濤、孫富春、Anbang Yao、劉華平、Ming Lu 和陳玉榮。基...
...不同變體。在本論文中將介紹一種深度學習框架,它首先檢測14個面部關鍵點,然后利用它們進行偽裝人臉識別。由于深度學習架構的訓練依賴于大型的帶注釋數據集,因此在這里我們引入了兩個帶注釋的面部關鍵點數據集。針...
...網絡已經被應用于各種各樣問題,如自動駕駛車輛、癌癥檢測等,但是我們迫切需要更好地理解這些模型容易受到攻擊的方式。在圖像識別領域,在圖像中添加小的、往往不可察覺的干擾就可以欺騙一個典型的分類網絡,使其將...
...南京信息工程大學和帝國理工學院的團隊 BDAT 獲得了目標檢測的最優成績,最優檢測目標數量為 85、平均較精確率為 0.732227。而在目標定位任務中Momenta和牛津大學的 WMV 團隊和 NUS-Qihoo_DPNs (CLS-LOC) 團隊分別在提供的數據內和加上...
目標檢測是很多計算機視覺任務的基礎,不論我們需要實現圖像與文字的交互還是需要識別精細類別,它都提供了可靠的信息。本文對目標檢測進行了整體回顧,第一部分從RCNN開始介紹基于候選區域的目標檢測器,包括Fast R-CN...
在過去幾個月中,我一直在實驗室中研究提升目標檢測的方法。在這之中我獲得的較大啟發就是意識到:學習目標檢測的較佳方法就是自己動手實現這些算法,而這正是本教程引導你去做的。 在本教程中,我們將使用 PyTorch ...
ChatGPT和Sora等AI大模型應用,將AI大模型和算力需求的熱度不斷帶上新的臺階。哪里可以獲得...
大模型的訓練用4090是不合適的,但推理(inference/serving)用4090不能說合適,...
圖示為GPU性能排行榜,我們可以看到所有GPU的原始相關性能圖表。同時根據訓練、推理能力由高到低做了...