回答:前幾年我做過一個(gè)鋼廠眾多監(jiān)測(cè)設(shè)備的數(shù)據(jù)釆集系統(tǒng),用戶界面是瀏覽器。數(shù)據(jù)庫是postgresql,后臺(tái)中間件是python寫。因?yàn)獒娂瘮?shù)據(jù)是海量的,所以所有數(shù)據(jù)通過多線程或multiprocessing,數(shù)據(jù)在存入數(shù)據(jù)庫時(shí),也傳遞給一個(gè)python字典,里面存放最新的數(shù)據(jù)。遠(yuǎn)程網(wǎng)頁自動(dòng)刷新時(shí),通過CGI和socket,對(duì)于authorized的session ID,就可以直接從后臺(tái)內(nèi)存里的這個(gè)字典獲...
回答:最早聽到人臉識(shí)別概念還是從科幻電影中,通過一個(gè)人的面部特征,機(jī)器可以知道你是誰。隨著技術(shù)的進(jìn)步,人臉識(shí)別已經(jīng)走入了人們的生活,iPhone手機(jī)上的Face ID就是其中的代表產(chǎn)品,第一次讓這項(xiàng)技術(shù)與消費(fèi)者有了近距離的接觸。Face ID于2017年在iPhone X上推出,該技術(shù)取代了蘋果的Touch ID指紋掃描系統(tǒng)。Face ID使用True Depth攝像頭系統(tǒng),該系統(tǒng)由傳感器、攝像頭和位于...
本文將詳細(xì)解析深度神經(jīng)網(wǎng)絡(luò)識(shí)別圖形圖像的基本原理。針對(duì)卷積神經(jīng)網(wǎng)絡(luò),本文將詳細(xì)探討網(wǎng)絡(luò) 中每一層在圖像識(shí)別中的原理和作用,例如卷積層(convolutional layer),采樣層(pooling layer),全連接層(hidden layer),輸出層(softmax outpu...
...results=hands.process(imgRGB) 在顯示圖片之前,我們需要對(duì)圖像進(jìn)行一些處理 # 下面這個(gè)函數(shù),當(dāng)手放入攝像頭范圍內(nèi),就會(huì)返回相應(yīng)的Landmark值,否則返回的是None #print(results.multi_hand_landmarks) # 輸出手的每個(gè)坐標(biāo)(一只...
...和項(xiàng)目都在使用AlloyFinger。如下圖所示: 基本上只要有圖像裁剪、圖像查看的地方都會(huì)使用到AlloyFinger。因此AlloyFinger也入選了騰訊code平臺(tái)的精品組件: 除了國(guó)內(nèi)外的項(xiàng)目團(tuán)隊(duì)都在使用AlloyFinger,國(guó)內(nèi)外的各大IT網(wǎng)站也進(jìn)行了轉(zhuǎn)...
...英文混合) detect_direction => false, //是否檢測(cè)圖像朝向 detect_language => false, //是否檢測(cè)語言,默認(rèn)不檢測(cè) probability => false, //是否返回識(shí)別結(jié)果中每一行的置信度 ]); 通用文字識(shí)別(高精度版...
...性路由代替了較大池化。與CNN類似,更高層的網(wǎng)絡(luò)觀察了圖像中更大的范圍,不過由于不再是較大池化,所以位置信息一直都得到了保留。對(duì)于較低的層,空間位置的判斷也只需要看是哪些膠囊被激活了。這個(gè)網(wǎng)絡(luò)中最底層的多...
... 人臉識(shí)別是近年來模式識(shí)別、圖像處理、機(jī)器視覺、神經(jīng)網(wǎng)絡(luò)以及認(rèn)知科學(xué)等領(lǐng)域研究的熱點(diǎn)課題之一,被廣泛應(yīng)用于公共安全(罪犯識(shí)別等)、安全驗(yàn)證系統(tǒng)、信用卡驗(yàn)證、醫(yī)學(xué)、檔案管理、視頻會(huì)...
...a1889/HistoryObjectRecognition/find/master計(jì)算機(jī)視覺 6 大關(guān)鍵技術(shù)圖像分類:根據(jù)圖像的主要內(nèi)容進(jìn)行分類。數(shù)據(jù)集:MNIST, CIFAR, ImageNet物體定位:預(yù)測(cè)包含主要物體的圖像區(qū)域,以便識(shí)別區(qū)域中的物體。數(shù)據(jù)集:ImageNet物體識(shí)別:定位并...
...習(xí)模型。使用這個(gè)模型我們可以檢測(cè)和定位的邊界框坐標(biāo)圖像中包含的文本。下一步是把這些區(qū)域包含文本和實(shí)際識(shí)別和OCR文字使用OpenCV和Tesseract。 Tesseract 進(jìn)行 OpenCV OCR 和文本識(shí)別 為了執(zhí)行 OpenCV OCR 和文本識(shí)別任務(wù),我們首先...
ChatGPT和Sora等AI大模型應(yīng)用,將AI大模型和算力需求的熱度不斷帶上新的臺(tái)階。哪里可以獲得...
大模型的訓(xùn)練用4090是不合適的,但推理(inference/serving)用4090不能說合適,...
圖示為GPU性能排行榜,我們可以看到所有GPU的原始相關(guān)性能圖表。同時(shí)根據(jù)訓(xùn)練、推理能力由高到低做了...