回答:個人的觀點,這種大表的優化,不一定上來就要分庫分表,因為表一旦被拆分,開發、運維的復雜度會直線上升,而大多數公司是欠缺這種能力的。所以MySQL中幾百萬甚至小幾千萬的表,先考慮做單表的優化。單表優化單表優化可以從這幾個角度出發:表分區:MySQL在5.1之后才有的,可以看做是水平拆分,分區表需要在建表的需要加上分區參數,用戶需要在建表的時候加上分區參數;分區表底層由多個物理子表組成,但是對于代碼來...
回答:當一張表的數據量達到千萬級別的時候,任何對表的操作都得小心翼翼。核心點在于避免全表掃描、避免鎖表、避免產生大量行鎖。本質上是讓每一次sql的執行都更快的完成,避免過長時間占用數據庫連接,讓連接能夠迅速的釋放回數據庫連接池,提供更多穩定的服務。一旦產生大量的行鎖甚至表鎖,將會帶來連接瞬間被打滿、數據庫資源耗盡、服務宕機的災難性后果。所以如何避免以上問題的發生才是最重要的,絕不能等問題發生之后再去解決...
回答:我是做JAVA后臺開發的,目前為止最多處理過每天600萬左右的數據!數據不算特別多,但是也算是經歷過焦頭爛額,下面淺談下自己和團隊怎么做的?后臺架構:前置部門:負責接收別的公司推過來的數據,因為每天的數據量較大,且分布不均,使用十分鐘推送一次報文的方式,使用batch框架進行數據落地,把落地成功的數據某個字段返回給調用端,讓調用端驗證是否已經全部落地成功的,保證數據的一致性!核心處理:使用了spr...
回答:mysql在常規配置下,一般只能承受2000萬的數據量(同時讀寫,且表中有大文本字段,單臺服務器)。現在超過1億,并不斷增加的情況下,建議如下處理:1 分表。可以按時間,或按一定的規則拆分,做到查詢某一條數據庫,盡量在一個子表中即可。這是最有效的方法2 讀寫分離。尤其是寫入,放在新表中,定期進行同步。如果其中記錄不斷有update,最好將寫的數據放在 redis中,定期同步3 表的大文本字段分離出...
回答:首先明確下定義:計算時間是指計算機實際執行的時間,不是人等待的時間,因為等待時間依賴于有多少資源可以調度。首先我們不考慮資源問題,討論時間的預估。執行時間依賴于執行引擎是 Spark 還是 MapReduce。Spark 任務Spark 任務的總執行時間可以看 Spark UI,以下圖為例Spark 任務是分多個 Physical Stage 執行的,每個stage下有很多個task,task 的...
...柱狀圖,餅狀圖,氣泡圖。 3.地圖類:2d線性地圖(geojson數據)。 社區活躍度Echarts:國內開發,百度前端團隊維護,版本更新速度快,國內不少愛好者嘗試發布新實例。 Highcharts:國外公司開發,版本性能穩定,國內外使用者...
...我們使用修飾符-o表示描邊型,不帶-o為實心型 常用狀態svg和iconfont可以不需要 常用狀態激活 actived禁用 disabled懸停 hover 示例 帶圈圈的加號非實心且激活png:plus-actived-circle-osvg/iconfont: plus-circle-o 建議使用svg和iconfont png vs svn vs i...
...我們使用修飾符-o表示描邊型,不帶-o為實心型 常用狀態svg和iconfont可以不需要 常用狀態激活 actived禁用 disabled懸停 hover 示例 帶圈圈的加號非實心且激活png:plus-actived-circle-osvg/iconfont: plus-circle-o 建議使用svg和iconfont png vs svn vs i...
...性),但考慮到此方法與現在大部分前端項目中所使用的數據可視化方案相比仍有一些優勢,因此仍以新一代進行描述。 前端生態中的幾座大山 在進入主題之前,我們應該先明確需要解決的問題是什么。 當我們進行技術選...
ChatGPT和Sora等AI大模型應用,將AI大模型和算力需求的熱度不斷帶上新的臺階。哪里可以獲得...
大模型的訓練用4090是不合適的,但推理(inference/serving)用4090不能說合適,...
圖示為GPU性能排行榜,我們可以看到所有GPU的原始相關性能圖表。同時根據訓練、推理能力由高到低做了...