回答:這個問題,對許多做AI的人來說,應該很重要。因為,顯卡這么貴,都自購,顯然不可能。但是,回答量好少。而且最好的回答,竟然是講amazon aws的,這對國內用戶,有多大意義呢?我來接地氣的回答吧。簡單一句話:我們有萬能的淘寶啊!說到GPU租用的選擇。ucloud、ucloud、ucloud、滴滴等,大公司云平臺,高大上。但是,第一,非常昂貴。很多不提供按小時租用,動不動就是包月。幾千大洋撒出去,還...
回答:這個就不用想了,自己配置開發平臺費用太高,而且產生的效果還不一定好。根據我這邊的開發經驗,你可以借助網上很多免費提供的云平臺使用。1.Floyd,這個平臺提供了目前市面上比較主流框架各個版本的開發環境,最重要的一點就是,這個平臺上還有一些常用的數據集。有的數據集是系統提供的,有的則是其它用戶提供的。2.Paas,這個云平臺最早的版本是免費試用半年,之后開始收費,現在最新版是免費的,當然免費也是有限...
... 采用本地SSD磁盤,IO性能高 中大型數據庫,核心業務服務器等 GPU型G 搭載K80,P40或V100 GPU 人工智能,科學計算,圖形渲染等 價格詳情請參見:主機價格 標準型 N 機型特點:配置自由靈活,可...
此文檔適合于2019年5月后新上線的新版主機創建頁,重新定義了大部分機型的概念,這些新概念被聚合為主機機型概念2.0。若您仍然使用舊版本的主機創建頁,機型概念請參照主機概念1.0的文檔機型與規格;若您希望了解2.0概念...
...的硬件平臺包括兩種CPU(臺式機級別的英特爾i7-3820 CPU,服務器級別的英特爾Xeon E5-2630 CPU)和三種Nvidia GPU (GTX 980、GTX 1080、Telsa K80,分別是Maxwell、Pascal和Kepler 架構)。作者也用兩個Telsa K80卡(總共4個GK210 GPU)來評估多GPU卡并行...
...無法準確評估所需云主機配置,此時可以先申請普通規格服務器,后續再熱升級調整。遇到業務壓力劇增的突發情況時,在平行擴容云主機數量的同時,也可以把熱升級作為應急手段。2.2 限制目前僅支持Broadwell及以上的cpu平臺...
...模型的訓練速度,相比CPU能提供更快的處理速度、更少的服務器投入和更低的功耗。這也意味著,GPU集群上訓練深度學習模型,迭代時間更短,參數同步更頻繁。[9]中對比了主流深度學習系統在CPU和GPU上的訓練性能,可以看出GPU...
Note 文檔中的價格以北京二可用區E為例 其它可用區價格可查看云主機控制臺或價格計算器,各機型詳情可查看機型與規格。 1. 計費方式 一臺云主機費用為CPU、內存、系統盤、數據盤、外網帶寬、GPU、網絡增強、數據方舟...
...。不管是CPU+GPU還是CPU+FPGA ,都是為了更好地服務個性化的計算需求。可以預見的是隨著計算產業的演進,異構計算具有廣泛的發展空間,我們也會看到越來越多的異構計算架構在承載應用方面發揮越來越重要的作用...
...。整個過程可以看成一個計算流。一開始,數據來自數據服務器,然后通過一系列的節點傳遞到有向非循環圖的最后 一個節點并保存到數據服務器中。值得注意的是, KernelHive 優化器根據給定的優化標準在每一個將要執行任務...
本文作者詳細描述了自己組裝深度學習服務器的過程,從 CPU、GPU、主板、電源、機箱等的選取到部件的安裝,再到服務器的設置,可謂面面俱到。作者指出,組裝者首先要弄清自己的需求,然后根據預算做出合理的選擇。 注...
ChatGPT和Sora等AI大模型應用,將AI大模型和算力需求的熱度不斷帶上新的臺階。哪里可以獲得...
大模型的訓練用4090是不合適的,但推理(inference/serving)用4090不能說合適,...
圖示為GPU性能排行榜,我們可以看到所有GPU的原始相關性能圖表。同時根據訓練、推理能力由高到低做了...