摘要:理論是一種快速特征點提取和描述的算法這個算法是由以及在年一篇名為的文章中提出算法分為兩部分,分別是特征點提取和特征點描述。特征提取是由算法發展來的,特征點描述是根據特征描述算法改進的
ORB (Oriented FAST and Rotated BRIEF)
理論ORB(Oriented FAST and Rotated BRIEF)是一種快速特征點提取和描述的算法,這個算法是由Ethan Rublee, Vincent Rabaud, Kurt Konolige以及Gary R.Bradski在2011年一篇名為“ORB:An Efficient Alternative to SIFTor SURF”的文章中提出.ORB算法分為兩部分,分別是特征點提取和特征點描述。特征提取是由FAST(Features from Accelerated Segment Test)算法發展來的,特征點描述是根據BRIEF(Binary Robust IndependentElementary Features)特征描述算法改進的.
ORB in OpenCVimport numpy as np import cv2 import matplotlib.pyplot as plt img = cv2.imread("img.jpg") # Initiate ORB detector orb = cv2.ORB_create() # find the keypoints with ORB kp = orb.detect(img,None) # compute the descriptors with ORB kp, des = orb.compute(img, kp) # draw only keypoints location,not size and orientation img2 = cv2.drawKeypoints(img, kp, None, color=(0,255,0), flags=0) plt.imshow(img2), plt.show()
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。
轉載請注明本文地址:http://specialneedsforspecialkids.com/yun/42075.html
摘要:匹配器匹配非常簡單,首先在第一幅圖像中選取一個關鍵點然后依次與第二幅圖像的每個關鍵點進行描述符距離測試,最后返回距離最近的關鍵點對于匹配器,首先我們必須使用創建對象。 Feature Matching Brute-Force匹配器 Brute-Force匹配非常簡單,首先在第一幅圖像中選取一個關鍵點然后依次與第二幅圖像的每個關鍵點進行(描述符)距離測試,最后返回距離最近的關鍵點. 對于...
摘要:降采樣的目的是為了綜合所有不同清晰度的圖像進行關鍵點提取,這種關鍵點攜帶了不同清晰度的信息,對縮放具有不變性。是對的一種改進,主要特點是快速。的達到維,導致的比較耗時,使用哈爾小波轉換得到的方向,讓的降到維,減少了一半,提高了匹配速度。 尺度不變特征變換(Scale-invariant feature transform, 簡稱SIFT)是圖像局部特征提取的現代方法——基于區域/圖像塊...
摘要:理論我們知道使用向量作為描述符,由于它使用浮點數,因此基本上需要個字節,類似地,也至少需要個字節對于,為數千個特征創建這樣的向量需要大量的內存,這對于資源約束應用程序尤其是嵌入式系統是不可行的,內存越大,匹配所需的時間越長實際匹配可能不 BRIEF (Binary Robust Independent Elementary Features) 理論 我們知道SIFT使用128-dim...
摘要:圖像矩圖像矩或稱幾何矩是由在年提出的。矩給出了對圖像形狀的一種度量。使用建議的第二種采樣方法即以圖像中心進行高斯分布采樣,長度使用,然后在基礎上增加了旋轉的描述以及快速的計算方法,這種方法被稱為。 ORB(Oriented FAST and Rotated BRIEF)可用來替代SIFT(或SURF),它對圖像更具有抗噪特性,是一種特征檢測高效算法,其速度滿足實時要求,可用于增強圖像匹...
閱讀 883·2021-11-22 12:04
閱讀 2088·2021-11-02 14:46
閱讀 616·2021-08-30 09:44
閱讀 2098·2019-08-30 15:54
閱讀 715·2019-08-29 13:48
閱讀 1587·2019-08-29 12:56
閱讀 3441·2019-08-28 17:51
閱讀 3279·2019-08-26 13:44