回答:pandas是python一個非常著名的數據處理庫,內置了大量函數和類型,可以快速讀取日常各種文件,包括txt,csv,excel,json,mysql等,為機器學習模型提供樣本輸入(包括數據預處理等),下面我簡單介紹一下這個庫的使用,以讀取這5種類型文件為例:txt這里直接使用read_csv函數讀取就行(早期版本中可以使用read_table函數),測試代碼如下,非常簡單,第一個參數為讀取的t...
回答:如果面試官始終問你,機器學習是什么?要學什么課程?發展方向是什么?諸如此類泛泛的問題,這說明他機器學習水平一般。如果面試官問你,人工神經網絡、貝葉斯學習主要研究什么?Boosting與Bagging算法的主要區別是什么?這說明他對機器學習還算了解。如果他給你如下三張圖,并讓你指出每張的含義,現場用計算機編程,或者搜一段算法程序,估計你要很重視他了,應當是個高手。總結:千萬不要小看面試官,即使他是個...
回答:在日常開發運維工作中,經常會遇到多臺服務器上的數據同步問題,特別是集群部署時,如果不是自動化同步數據,全靠人工同步那工作量就會很大。Linux的文件同步工具 RsyncRsync是Linux系統下的一款數據備份工具,使用它可以增量備份,不光光支持本地復制還支持遠程同步,功能十分強大。1、Rsync優點:Rsync在第一次同步時是全量同步,后面同步時只會傳輸修改過的文件;在傳輸過程中還可以進行壓縮傳...
深度學習的理論還存在諸多神秘之處。近來很多機器學習理論研究者都在關注神秘的泛化(generalization):為什么訓練后的深度網絡能在之前并未見過的數據上取得良好的表現,即便它們的自由參數的數量遠遠超過了數據點的數...
機器學習算法可以通過學習就可以弄清楚如何去執行一些重要的任務。在手動編程不可行的情況下,這種方法通常既可行又經濟有效。隨著可獲取的數據在逐步增多,越來越多更加復雜的問題可以用機器學習來解決。事實上...
利用深度神經網絡的機器已經學會了交談、開車,在玩視頻游戲和下圍棋時擊敗了世界冠軍,還能做夢、畫畫,幫助進行科學發現,但同時它們也深深地讓其發明者困惑,誰也沒有料到所謂的深度學習算法能做得這么好。...
TensorFlow 是相對高階的機器學習庫,用戶可以方便地用它設計神經網絡結構,而不必為了追求高效率的實現親自寫 C++或 CUDA 代碼。它和 Theano 一樣都支持自動求導,用戶不需要再通過反向傳播求解梯度。 而基于 TensorFlow 的輕...
...出60周年,的《Nature》雜志專門開辟了一個人工智能 + 機器人專題 ,發表多篇相關論文,其中包括了Yann LeCun、Yoshua Bengio和Geoffrey Hinton首次合作的這篇綜述文章Deep Learning。本文為該綜述文章中文譯文的上半部分,深入淺...
...出在哪個層次它們的組件能夠起作用。之后,他給出了從機器學習(ML)向真正人工智能遷移的3個關鍵點:大量數據,非常靈活的模型,強大的先驗,而且,因為經典ML可以處理前兩個關鍵點,所以他的博客是關于如果處理第三...
ChatGPT和Sora等AI大模型應用,將AI大模型和算力需求的熱度不斷帶上新的臺階。哪里可以獲得...
大模型的訓練用4090是不合適的,但推理(inference/serving)用4090不能說合適,...
圖示為GPU性能排行榜,我們可以看到所有GPU的原始相關性能圖表。同時根據訓練、推理能力由高到低做了...