国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

前端面試必備——十大經典排序算法

RebeccaZhong / 2383人閱讀

摘要:冒泡排序冒泡排序也是一種簡單直觀的排序算法。但希爾排序是非穩定排序算法。快速排序又是一種分而治之思想在排序算法上的典型應用。本質上來看,快速排序應該算是在冒泡排序基礎上的遞歸分治法。

冒泡排序

冒泡排序(Bubble Sort)也是一種簡單直觀的排序算法。它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。這個算法的名字由來是因為越小的元素會經由交換慢慢“浮”到數列的頂端。

作為最簡單的排序算法之一,冒泡排序給我的感覺就像 Abandon 在單詞書里出現的感覺一樣,每次都在第一頁第一位,所以最熟悉。冒泡排序還有一種優化算法,就是立一個 flag,當在一趟序列遍歷中元素沒有發生交換,則證明該序列已經有序。但這種改進對于提升性能來說并沒有什么太大作用。

1. 算法步驟

比較相鄰的元素。如果第一個比第二個大,就交換他們兩個。

對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最后一對。這步做完后,最后的元素會是最大的數。

針對所有的元素重復以上的步驟,除了最后一個。

持續每次對越來越少的元素重復上面的步驟,直到沒有任何一對數字需要比較。

2. 動圖演示

3. 什么時候最快

當輸入的數據已經是正序時(都已經是正序了,我還要你冒泡排序有何用啊)。

4. 什么時候最慢

當輸入的數據是反序時(寫一個 for 循環反序輸出數據不就行了,干嘛要用你冒泡排序呢,我是閑的嗎)。

5. JavaScript 代碼實現
function bubbleSort(arr) {
    var len = arr.length;
    for (var i = 0; i < len - 1; i++) {
        for (var j = 0; j < len - 1 - i; j++) {
            if (arr[j] > arr[j+1]) {        // 相鄰元素兩兩對比
                var temp = arr[j+1];        // 元素交換
                arr[j+1] = arr[j];
                arr[j] = temp;
            }
        }
    }
    return arr;
}
6. Python 代碼實現
def bubbleSort(arr):
    for i in range(1, len(arr)):
        for j in range(0, len(arr)-i):
            if arr[j] > arr[j+1]:
                arr[j], arr[j + 1] = arr[j + 1], arr[j]
    return arr
7. Go 代碼實現
func bubbleSort(arr []int) []int {
    length := len(arr)
    for i := 0; i < length; i++ {
        for j := 0; j < length-1-i; j++ {
            if arr[j] > arr[j+1] {
                arr[j], arr[j+1] = arr[j+1], arr[j]
            }
        }
    }
    return arr
}
選擇排序

選擇排序是一種簡單直觀的排序算法,無論什么數據進去都是 O(n2) 的時間復雜度。所以用到它的時候,數據規模越小越好。唯一的好處可能就是不占用額外的內存空間了吧。

1. 算法步驟

首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置

再從剩余未排序元素中繼續尋找最小(大)元素,然后放到已排序序列的末尾。

重復第二步,直到所有元素均排序完畢。

2. 動圖演示

3. JavaScript 代碼實現
function selectionSort(arr) {
    var len = arr.length;
    var minIndex, temp;
    for (var i = 0; i < len - 1; i++) {
        minIndex = i;
        for (var j = i + 1; j < len; j++) {
            if (arr[j] < arr[minIndex]) {     // 尋找最小的數
                minIndex = j;                 // 將最小數的索引保存
            }
        }
        temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
    }
    return arr;
}
4. Python 代碼實現
def selectionSort(arr):
    for i in range(len(arr)-1):
        for j in range(i+1, len(arr)):
            if arr[j] < arr[i]:
                arr[i], arr[j] = arr[j], arr[i]
    return arr
5. Go 代碼實現
func selectionSort(arr []int) []int {
    length := len(arr)
    for i := 0; i < length-1; i++ {
        min := i
        for j := i + 1; j < length; j++ {
            if arr[min] > arr[j] {
                min = j
            }
        }
        arr[i], arr[min] = arr[min], arr[i]
    }
    return arr
}
插入排序

插入排序的代碼實現雖然沒有冒泡排序和選擇排序那么簡單粗暴,但它的原理應該是最容易理解的了,因為只要打過撲克牌的人都應該能夠秒懂。插入排序是一種最簡單直觀的排序算法,它的工作原理是通過構建有序序列,對于未排序數據,在已排序序列中從后向前掃描,找到相應位置并插入。

插入排序和冒泡排序一樣,也有一種優化算法,叫做拆半插入。

1. 算法步驟

將第一待排序序列第一個元素看做一個有序序列,把第二個元素到最后一個元素當成是未排序序列。

從頭到尾依次掃描未排序序列,將掃描到的每個元素插入有序序列的適當位置。(如果待插入的元素與有序序列中的某個元素相等,則將待插入元素插入到相等元素的后面。)

2. 動圖演示

3. JavaScript 代碼實現
function insertionSort(arr) {
    var len = arr.length;
    var preIndex, current;
    for (var i = 1; i < len; i++) {
        preIndex = i - 1;
        current = arr[i];
        while(preIndex >= 0 && arr[preIndex] > current) {
            arr[preIndex+1] = arr[preIndex];
            preIndex--;
        }
        arr[preIndex+1] = current;
    }
    return arr;
}
4. Python 代碼實現
def insertionSort(arr):
    for i in range(len(arr)):
        preIndex = i-1
        current = arr[i]
        while preIndex >= 0 and arr[preIndex] > current:
            arr[preIndex+1] = arr[preIndex]
            preIndex-=1
        arr[preIndex+1] = current
 ? ?return arr
5. Go 代碼實現
func insertionSort(arr []int) []int {
    for i := range arr {
        preIndex := i - 1
        current := arr[i]
        for preIndex >= 0 && arr[preIndex] > current {
            arr[preIndex+1] = arr[preIndex]
            preIndex -= 1
        }
        arr[preIndex+1] = current
    }
    return arr
}
希爾排序

希爾排序,也稱遞減增量排序算法,是插入排序的一種更高效的改進版本。但希爾排序是非穩定排序算法。

希爾排序是基于插入排序的以下兩點性質而提出改進方法的:

插入排序在對幾乎已經排好序的數據操作時,效率高,即可以達到線性排序的效率;

但插入排序一般來說是低效的,因為插入排序每次只能將數據移動一位;

希爾排序的基本思想是:先將整個待排序的記錄序列分割成為若干子序列分別進行直接插入排序,待整個序列中的記錄“基本有序”時,再對全體記錄進行依次直接插入排序。

1. 算法步驟

選擇一個增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;

按增量序列個數 k,對序列進行 k 趟排序;

每趟排序,根據對應的增量 ti,將待排序列分割成若干長度為 m 的子序列,分別對各子表進行直接插入排序。僅增量因子為 1 時,整個序列作為一個表來處理,表長度即為整個序列的長度。

2. JavaScript 代碼實現
function shellSort(arr) {
    var len = arr.length,
        temp,
        gap = 1;
    while(gap < len/3) {          //動態定義間隔序列
        gap =gap*3+1;
    }
    for (gap; gap > 0; gap = Math.floor(gap/3)) {
        for (var i = gap; i < len; i++) {
            temp = arr[i];
            for (var j = i-gap; j >= 0 && arr[j] > temp; j-=gap) {
                arr[j+gap] = arr[j];
            }
            arr[j+gap] = temp;
        }
    }
    return arr;
}
3. Python 代碼實現
def shellSort(arr):
    import math
    gap=1
    while(gap < len(arr)/3):
        gap = gap*3+1
    while gap > 0:
        for i in range(gap,len(arr)):
            temp = arr[i]
            j = i-gap
            while j >=0 and arr[j] > temp:
                arr[j+gap]=arr[j]
                j-=gap
            arr[j+gap] = temp
        gap = math.floor(gap/3)
    return arr
}
4. Go 代碼實現
func shellSort(arr []int) []int {
    length := len(arr)
    gap := 1
    for gap < gap/3 {
        gap = gap*3 + 1
    }
    for gap > 0 {
        for i := gap; i < length; i++ {
            temp := arr[i]
            j := i - gap
            for j >= 0 && arr[j] > temp {
                arr[j+gap] = arr[j]
                j -= gap
            }
            arr[j+gap] = temp
        }
        gap = gap / 3
    }
    return arr
}
歸并排序

歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。

作為一種典型的分而治之思想的算法應用,歸并排序的實現由兩種方法:

自上而下的遞歸(所有遞歸的方法都可以用迭代重寫,所以就有了第 2 種方法);

自下而上的迭代;

和選擇排序一樣,歸并排序的性能不受輸入數據的影響,但表現比選擇排序好的多,因為始終都是 O(nlogn) 的時間復雜度。代價是需要額外的內存空間。

2. 算法步驟

申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合并后的序列;

設定兩個指針,最初位置分別為兩個已經排序序列的起始位置;

比較兩個指針所指向的元素,選擇相對小的元素放入到合并空間,并移動指針到下一位置;

重復步驟 3 直到某一指針達到序列尾;

將另一序列剩下的所有元素直接復制到合并序列尾。

3. 動圖演示

4. JavaScript 代碼實現
function mergeSort(arr) {  // 采用自上而下的遞歸方法
    var len = arr.length;
    if(len < 2) {
        return arr;
    }
    var middle = Math.floor(len / 2),
        left = arr.slice(0, middle),
        right = arr.slice(middle);
    return merge(mergeSort(left), mergeSort(right));
}

function merge(left, right)
{
    var result = [];

    while (left.length && right.length) {
        if (left[0] <= right[0]) {
            result.push(left.shift());
        } else {
            result.push(right.shift());
        }
    }

    while (left.length)
        result.push(left.shift());

    while (right.length)
        result.push(right.shift());

    return result;
}
5. Python 代碼實現
def mergeSort(arr):
    import math
    if(len(arr)<2):
        return arr
    middle = math.floor(len(arr)/2)
    left, right = arr[0:middle], arr[middle:]
    return merge(mergeSort(left), mergeSort(right))

def merge(left,right):
    result = []
    while left and right:
        if left[0] <= right[0]:
            result.append(left.pop(0));
        else:
            result.append(right.pop(0));
    while left:
        result.append(left.pop(0));
    while right:
        result.append(right.pop(0));
    return result
6. Go 代碼實現
func mergeSort(arr []int) []int {
    length := len(arr)
    if length < 2 {
        return arr
    }
    middle := length / 2
    left := arr[0:middle]
    right := arr[middle:]
    return merge(mergeSort(left), mergeSort(right))
}

func merge(left []int, right []int) []int {
    var result []int
    for len(left) != 0 && len(right) != 0 {
        if left[0] <= right[0] {
            result = append(result, left[0])
            left = left[1:]
        } else {
            result = append(result, right[0])
            right = right[1:]
        }
    }

    for len(left) != 0 {
        result = append(result, left[0])
        left = left[1:]
    }

    for len(right) != 0 {
        result = append(result, right[0])
        right = right[1:]
    }

    return result
}
快速排序

快速排序是由東尼·霍爾所發展的一種排序算法。在平均狀況下,排序 n 個項目要 Ο(nlogn) 次比較。在最壞狀況下則需要 Ο(n2) 次比較,但這種狀況并不常見。事實上,快速排序通常明顯比其他 Ο(nlogn) 算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。

快速排序使用分治法(Divide and conquer)策略來把一個串行(list)分為兩個子串行(sub-lists)。

快速排序又是一種分而治之思想在排序算法上的典型應用。本質上來看,快速排序應該算是在冒泡排序基礎上的遞歸分治法。

快速排序的名字起的是簡單粗暴,因為一聽到這個名字你就知道它存在的意義,就是快,而且效率高!它是處理大數據最快的排序算法之一了。雖然 Worst Case 的時間復雜度達到了 O(n2),但是人家就是優秀,在大多數情況下都比平均時間復雜度為 O(n logn) 的排序算法表現要更好。

1. 算法步驟

從數列中挑出一個元素,稱為 “基準”(pivot);

重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的后面(相同的數可以到任一邊)。在這個分區退出之后,該基準就處于數列的中間位置。這個稱為分區(partition)操作;

遞歸地(recursive)把小于基準值元素的子數列和大于基準值元素的子數列排序;

遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最后的位置去。

2. 動圖演示

3. JavaScript 代碼實現
function quickSort(arr, left, right) {
    var len = arr.length,
        partitionIndex,
        left = typeof left != "number" ? 0 : left,
        right = typeof right != "number" ? len - 1 : right;

    if (left < right) {
        partitionIndex = partition(arr, left, right);
        quickSort(arr, left, partitionIndex-1);
        quickSort(arr, partitionIndex+1, right);
    }
    return arr;
}

function partition(arr, left ,right) {     // 分區操作
    var pivot = left,                      // 設定基準值(pivot)
        index = pivot + 1;
    for (var i = index; i <= right; i++) {
        if (arr[i] < arr[pivot]) {
            swap(arr, i, index);
            index++;
        }        
    }
    swap(arr, pivot, index - 1);
    return index-1;
}

function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
functiion paritition2(arr, low, high) {
  let pivot = arr[low];
  while (low < high) {
    while (low < high && arr[high] > pivot) {
      --high;
    }
    arr[low] = arr[high];
    while (low < high && arr[low] <= pivot) {
      ++low;
    }
    arr[high] = arr[low];
  }
  arr[low] = pivot;
  return low;
}

function quickSort2(arr, low, high) {
  if (low < high) {
    let pivot = paritition2(arr, low, high);
    quickSort2(arr, low, pivot - 1);
    quickSort2(arr, pivot + 1, high);
  }
  return arr;
}
4. Python 代碼實現
def quickSort(arr, left=None, right=None):
    left = 0 if not isinstance(left,(int, float)) else left
    right = len(arr)-1 if not isinstance(right,(int, float)) else right
    if left < right:
        partitionIndex = partition(arr, left, right)
        quickSort(arr, left, partitionIndex-1)
        quickSort(arr, partitionIndex+1, right)
    return arr

def partition(arr, left, right):
    pivot = left
    index = pivot+1
    i = index
    while  i <= right:
        if arr[i] < arr[pivot]:
            swap(arr, i, index)
            index+=1
        i+=1
    swap(arr,pivot,index-1)
    return index-1

def swap(arr, i, j):
    arr[i], arr[j] = arr[j], arr[i]
5. Go 代碼實現
func quickSort(arr []int) []int {
    return _quickSort(arr, 0, len(arr)-1)
}

func _quickSort(arr []int, left, right int) []int {
    if left < right {
        partitionIndex := partition(arr, left, right)
        _quickSort(arr, left, partitionIndex-1)
        _quickSort(arr, partitionIndex+1, right)
    }
    return arr
}

func partition(arr []int, left, right int) int {
    pivot := left
    index := pivot + 1

    for i := index; i <= right; i++ {
        if arr[i] < arr[pivot] {
            swap(arr, i, index)
            index += 1
        }
    }
    swap(arr, pivot, index-1)
    return index - 1
}

func swap(arr []int, i, j int) {
    arr[i], arr[j] = arr[j], arr[i]
}
6. C++版
 //標準分割函數
 Paritition1(int A[], int low, int high) {
   int pivot = A[low];
   while (low < high) {
     while (low < high && A[high] >= pivot) {
       --high;
     }
     A[low] = A[high];
     while (low < high && A[low] <= pivot) {
       ++low;
     }
     A[high] = A[low];
   }
   A[low] = pivot;
   return low;
 }

 void QuickSort(int A[], int low, int high) //快排母函數
 {
   if (low < high) {
     int pivot = Paritition1(A, low, high); 
     QuickSort(A, low, pivot - 1);
     QuickSort(A, pivot + 1, high);
   }
 }
堆排序

堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似完全二叉樹的結構,并同時滿足堆積的性質:即子結點的鍵值或索引總是小于(或者大于)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。分為兩種方法:

大頂堆:每個節點的值都大于或等于其子節點的值,在堆排序算法中用于升序排列;

小頂堆:每個節點的值都小于或等于其子節點的值,在堆排序算法中用于降序排列;

堆排序的平均時間復雜度為 Ο(nlogn)。

1. 算法步驟

創建一個堆 H[0……n-1];

把堆首(最大值)和堆尾互換;

把堆的尺寸縮小 1,并調用 shift_down(0),目的是把新的數組頂端數據調整到相應位置;

重復步驟 2,直到堆的尺寸為 1。

2. 動圖演示

3. JavaScript 代碼實現
var len;    // 因為聲明的多個函數都需要數據長度,所以把len設置成為全局變量

function buildMaxHeap(arr) {   // 建立大頂堆
    len = arr.length;
    for (var i = Math.floor(len/2); i >= 0; i--) {
        heapify(arr, i);
    }
}

function heapify(arr, i) {     // 堆調整
    var left = 2 * i + 1,
        right = 2 * i + 2,
        largest = i;

    if (left < len && arr[left] > arr[largest]) {
        largest = left;
    }

    if (right < len && arr[right] > arr[largest]) {
        largest = right;
    }

    if (largest != i) {
        swap(arr, i, largest);
        heapify(arr, largest);
    }
}

function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

function heapSort(arr) {
    buildMaxHeap(arr);

    for (var i = arr.length-1; i > 0; i--) {
        swap(arr, 0, i);
        len--;
        heapify(arr, 0);
    }
    return arr;
}
4. Python 代碼實現
def buildMaxHeap(arr):
    import math
    for i in range(math.floor(len(arr)/2),-1,-1):
        heapify(arr,i)

def heapify(arr, i):
    left = 2*i+1
    right = 2*i+2
    largest = i
    if left < arrLen and arr[left] > arr[largest]:
        largest = left
    if right < arrLen and arr[right] > arr[largest]:
        largest = right

    if largest != i:
        swap(arr, i, largest)
        heapify(arr, largest)

def swap(arr, i, j):
    arr[i], arr[j] = arr[j], arr[i]

def heapSort(arr):
    global arrLen
    arrLen = len(arr)
    buildMaxHeap(arr)
    for i in range(len(arr)-1,0,-1):
        swap(arr,0,i)
        arrLen -=1
        heapify(arr, 0)
 ? ?return arr
5. Go 代碼實現
func heapSort(arr []int) []int {
    arrLen := len(arr)
    buildMaxHeap(arr, arrLen)
    for i := arrLen - 1; i >= 0; i-- {
        swap(arr, 0, i)
        arrLen -= 1
        heapify(arr, 0, arrLen)
    }
    return arr
}

func buildMaxHeap(arr []int, arrLen int) {
    for i := arrLen / 2; i >= 0; i-- {
        heapify(arr, i, arrLen)
    }
}

func heapify(arr []int, i, arrLen int) {
    left := 2*i + 1
    right := 2*i + 2
    largest := i
    if left < arrLen && arr[left] > arr[largest] {
        largest = left
    }
    if right < arrLen && arr[right] > arr[largest] {
        largest = right
    }
    if largest != i {
        swap(arr, i, largest)
        heapify(arr, largest, arrLen)
    }
}

func swap(arr []int, i, j int) {
    arr[i], arr[j] = arr[j], arr[i]
}
計數排序

計數排序的核心在于將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中。作為一種線性時間復雜度的排序,計數排序要求輸入的數據必須是有確定范圍的整數。

1. 動圖演示

2. JavaScript 代碼實現
function countingSort(arr, maxValue) {
    var bucket = new Array(maxValue+1),
        sortedIndex = 0;
        arrLen = arr.length,
        bucketLen = maxValue + 1;

    for (var i = 0; i < arrLen; i++) {
        if (!bucket[arr[i]]) {
            bucket[arr[i]] = 0;
        }
        bucket[arr[i]]++;
    }

    for (var j = 0; j < bucketLen; j++) {
        while(bucket[j] > 0) {
            arr[sortedIndex++] = j;
            bucket[j]--;
        }
    }

    return arr;
}
3. Python 代碼實現
def countingSort(arr, maxValue):
    bucketLen = maxValue+1
    bucket = [0]*bucketLen
    sortedIndex =0
    arrLen = len(arr)
    for i in range(arrLen):
        if not bucket[arr[i]]:
            bucket[arr[i]]=0
        bucket[arr[i]]+=1
    for j in range(bucketLen):
        while bucket[j]>0:
            arr[sortedIndex] = j
            sortedIndex+=1
            bucket[j]-=1
    return arr
4. Go 代碼實現
func countingSort(arr []int, maxValue int) []int {
    bucketLen := maxValue + 1
    bucket := make([]int, bucketLen) // 初始為0的數組

    sortedIndex := 0
    length := len(arr)

    for i := 0; i < length; i++ {
        bucket[arr[i]] += 1
    }

    for j := 0; j < bucketLen; j++ {
        for bucket[j] > 0 {
            arr[sortedIndex] = j
            sortedIndex += 1
            bucket[j] -= 1
        }
    }

    return arr
}
桶排序

桶排序是計數排序的升級版。它利用了函數的映射關系,高效與否的關鍵就在于這個映射函數的確定。為了使桶排序更加高效,我們需要做到這兩點:

在額外空間充足的情況下,盡量增大桶的數量

使用的映射函數能夠將輸入的 N 個數據均勻的分配到 K 個桶中

同時,對于桶中元素的排序,選擇何種比較排序算法對于性能的影響至關重要。

1. 什么時候最快

當輸入的數據可以均勻的分配到每一個桶中。

2. 什么時候最慢

當輸入的數據被分配到了同一個桶中。

3. JavaScript 代碼實現
function bucketSort(arr, bucketSize) {
    if (arr.length === 0) {
      return arr;
    }

    var i;
    var minValue = arr[0];
    var maxValue = arr[0];
    for (i = 1; i < arr.length; i++) {
      if (arr[i] < minValue) {
          minValue = arr[i];                // 輸入數據的最小值
      } else if (arr[i] > maxValue) {
          maxValue = arr[i];                // 輸入數據的最大值
      }
    }

    //桶的初始化
    var DEFAULT_BUCKET_SIZE = 5;            // 設置桶的默認數量為5
    bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
    var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;   
    var buckets = new Array(bucketCount);
    for (i = 0; i < buckets.length; i++) {
        buckets[i] = [];
    }

    //利用映射函數將數據分配到各個桶中
    for (i = 0; i < arr.length; i++) {
        buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]);
    }

    arr.length = 0;
    for (i = 0; i < buckets.length; i++) {
        insertionSort(buckets[i]);                      // 對每個桶進行排序,這里使用了插入排序
        for (var j = 0; j < buckets[i].length; j++) {
            arr.push(buckets[i][j]);                      
        }
    }

    return arr;
}
基數排序

基數排序是一種非比較型整數排序算法,其原理是將整數按位數切割成不同的數字,然后按每個位數分別比較。由于整數也可以表達字符串(比如名字或日期)和特定格式的浮點數,所以基數排序也不是只能使用于整數。

1. 基數排序 vs 計數排序 vs 桶排序

基數排序有兩種方法:

這三種排序算法都利用了桶的概念,但對桶的使用方法上有明顯差異:

基數排序:根據鍵值的每位數字來分配桶;

計數排序:每個桶只存儲單一鍵值;

桶排序:每個桶存儲一定范圍的數值;

2. LSD 基數排序動圖演示

3. JavaScript 代碼實現
//LSD Radix Sort
var counter = [];
function radixSort(arr, maxDigit) {
    var mod = 10;
    var dev = 1;
    for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
        for(var j = 0; j < arr.length; j++) {
            var bucket = parseInt((arr[j] % mod) / dev);
            if(counter[bucket]==null) {
                counter[bucket] = [];
            }
            counter[bucket].push(arr[j]);
        }
        var pos = 0;
        for(var j = 0; j < counter.length; j++) {
            var value = null;
            if(counter[j]!=null) {
                while ((value = counter[j].shift()) != null) {
                      arr[pos++] = value;
                }
          }
        }
    }
    return arr;
}
參考文檔

原文地址

JS-Sorting-Algorithm

MERGE SORT 動畫演示

排序效果

常見排序算法

維基百科,自由的百科全書

文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。

轉載請注明本文地址:http://specialneedsforspecialkids.com/yun/84451.html

相關文章

  • 前端面試必備——十大經典排序算法

    摘要:冒泡排序冒泡排序也是一種簡單直觀的排序算法。但希爾排序是非穩定排序算法。快速排序又是一種分而治之思想在排序算法上的典型應用。本質上來看,快速排序應該算是在冒泡排序基礎上的遞歸分治法。 冒泡排序 冒泡排序(Bubble Sort)也是一種簡單直觀的排序算法。它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就...

    hover_lew 評論0 收藏0
  • 【程序員必備】知識點 持續更新

    TCP/IP HTTP和HTTPS有何區別? httpbin 一個簡單的HTTP請求和響應服務。 TCP的三次握手與四次揮手 通俗易懂版,詳細版本 MySQL CHAR和VARCHAR存取的差別 《高性能MySQL》筆記 - MySQL 鎖的基本類型 MySQL中的鎖之一:鎖的必要性及分類 MySQL中的鎖之二:行鎖、頁鎖、表鎖 MySQL Like與Regexp的區別 數據結構 數...

    hellowoody 評論0 收藏0
  • 【程序員必備】知識點 持續更新

    TCP/IP HTTP和HTTPS有何區別? httpbin 一個簡單的HTTP請求和響應服務。 TCP的三次握手與四次揮手 通俗易懂版,詳細版本 MySQL CHAR和VARCHAR存取的差別 《高性能MySQL》筆記 - MySQL 鎖的基本類型 MySQL中的鎖之一:鎖的必要性及分類 MySQL中的鎖之二:行鎖、頁鎖、表鎖 MySQL Like與Regexp的區別 數據結構 數...

    zhjx922 評論0 收藏0
  • 十大經典排序算法總結(Javascript描述)

    摘要:算法描述冒泡排序是一種簡單的排序算法。算法描述和實現一般來說,插入排序都采用在數組上實現。平均情況希爾排序年發明第一個突破的排序算法是簡單插入排序的改進版它與插入排序的不同之處在于,它會優先比較距離較遠的元素。 前言 讀者自行嘗試可以想看源碼戳這,博主在github建了個庫,讀者可以Clone下來本地嘗試。此博文配合源碼體驗更棒哦~~~ 個人博客:Damonare的個人博客 原文地址:...

    Binguner 評論0 收藏0

發表評論

0條評論

RebeccaZhong

|高級講師

TA的文章

閱讀更多
最新活動
閱讀需要支付1元查看
<