国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

android servicemanager與binder源碼分析三------如何進入內核通訊

lijy91 / 2148人閱讀

摘要:的構造傳遞進入的就是。如果狀態是,直接返回。到底是否正確呢看代碼先創建一個對象,這個對象是個存儲讀寫內容的對象。然后終于進入了內核驅動的部分。

承接上文,從getService開始,要開始走binder的通訊機制了。
首先是上文的java層 /frameworks/base/core/java/android/os/ServiceManagerNative.java:

118    public IBinder getService(String name) throws RemoteException {
119        Parcel data = Parcel.obtain();
120        Parcel reply = Parcel.obtain();
121        data.writeInterfaceToken(IServiceManager.descriptor);
122        data.writeString(name);
123        mRemote.transact(GET_SERVICE_TRANSACTION, data, reply, 0);
124        IBinder binder = reply.readStrongBinder();
125        reply.recycle();
126        data.recycle();
127        return binder;
128    }

1.建立2個Parcel數據data和reply,一個是入口數據,一個是出口數據;
2.data中寫入要獲取的service的name;
3.關鍵:走mRemote的transact函數;
4.讀取出口數據;
5.回收資源,返回讀取到的binder對象;

mRemote是個什么東西?看代碼:

29    /**
30     * Cast a Binder object into a service manager interface, generating
31     * a proxy if needed.
32     */
33    static public IServiceManager asInterface(IBinder obj)
34    {
35        if (obj == null) {
36            return null;
37        }
38        IServiceManager in =
39            (IServiceManager)obj.queryLocalInterface(descriptor);
40        if (in != null) {
41            return in;
42        }
43
44        return new ServiceManagerProxy(obj);
45    }
110    public ServiceManagerProxy(IBinder remote) {
111        mRemote = remote;
112    }

/frameworks/base/core/java/android/os/ServiceManager.java:

33    private static IServiceManager getIServiceManager() {
34        if (sServiceManager != null) {
35            return sServiceManager;
36        }
37
38        // Find the service manager
39        sServiceManager = ServiceManagerNative.asInterface(BinderInternal.getContextObject());
40        return sServiceManager;
41    }

/frameworks/base/core/java/com/android/internal/os/BinderInternal.java:

83    /**
84     * Return the global "context object" of the system.  This is usually
85     * an implementation of IServiceManager, which you can use to find
86     * other services.
87     */
88    public static final native IBinder getContextObject();

可以看到,是個IBinder對象,obj.queryLocalInterface(descriptor);這句話是IBinder定義的一個接口,實現在/frameworks/base/core/java/android/os/Binder.java:

248    /**
249     * Use information supplied to attachInterface() to return the
250     * associated IInterface if it matches the requested
251     * descriptor.
252     */
253    public IInterface queryLocalInterface(String descriptor) {
254        if (mDescriptor.equals(descriptor)) {
255            return mOwner;
256        }
257        return null;
258    }

插一句,這個descriptor是個描述符String類型的,費勁找了半天,在/frameworks/base/core/java/android/os/IServiceManager.java里面有定義:

63    static final String descriptor = "android.os.IServiceManager";

用來表示當前是ServiceManager。ServiceManagerProxy的構造傳遞進入的IBinder就是remote。就是BinderInternal.getContextObject()返回的。看下注釋:“Return the global "context object" of the system”,是系統的上下文context。找到在native層的實現:
/frameworks/base/core/jni/android_util_Binder.cpp

899static jobject android_os_BinderInternal_getContextObject(JNIEnv* env, jobject clazz)
900{
901    sp b = ProcessState::self()->getContextObject(NULL);
902    return javaObjectForIBinder(env, b);
903}
904

要弄清楚到底這個remote是個什么玩意兒,還要繼續看ProcessState這個類,一個c++類,看頭文件定義:
/frameworks/native/include/binder/ProcessState.h

37    static  sp    self();

是個單例,因為他是在native層,不是在驅動設備層,因此可以理解為每個進程一個。看看他的getContextObject干了什么吧:

85sp ProcessState::getContextObject(const sp& /*caller*/)
86{
87    return getStrongProxyForHandle(0);
88}
179sp ProcessState::getStrongProxyForHandle(int32_t handle)
180{
181    sp result;
182
183    AutoMutex _l(mLock);
184
185    handle_entry* e = lookupHandleLocked(handle);
186
187    if (e != NULL) {
188        // We need to create a new BpBinder if there isn"t currently one, OR we
189        // are unable to acquire a weak reference on this current one.  See comment
190        // in getWeakProxyForHandle() for more info about this.
191        IBinder* b = e->binder;
192        if (b == NULL || !e->refs->attemptIncWeak(this)) {
193            if (handle == 0) {
194                // Special case for context manager...
195                // The context manager is the only object for which we create
196                // a BpBinder proxy without already holding a reference.
197                // Perform a dummy transaction to ensure the context manager
198                // is registered before we create the first local reference
199                // to it (which will occur when creating the BpBinder).
200                // If a local reference is created for the BpBinder when the
201                // context manager is not present, the driver will fail to
202                // provide a reference to the context manager, but the
203                // driver API does not return status.
204                //
205                // Note that this is not race-free if the context manager
206                // dies while this code runs.
207                //
208                // TODO: add a driver API to wait for context manager, or
209                // stop special casing handle 0 for context manager and add
210                // a driver API to get a handle to the context manager with
211                // proper reference counting.
212
213                Parcel data;
214                status_t status = IPCThreadState::self()->transact(
215                        0, IBinder::PING_TRANSACTION, data, NULL, 0);
216                if (status == DEAD_OBJECT)
217                   return NULL;
218            }
219
220            b = new BpBinder(handle);
221            e->binder = b;
222            if (b) e->refs = b->getWeakRefs();
223            result = b;
224        } else {
225            // This little bit of nastyness is to allow us to add a primary
226            // reference to the remote proxy when this team doesn"t have one
227            // but another team is sending the handle to us.
228            result.force_set(b);
229            e->refs->decWeak(this);
230        }
231    }
232
233    return result;
234}

說實話,看到這里有點頭大了,在看操作系統源碼的時候經常是一個東西牽扯一堆的概念或其他的對象,如果你想跳過去只看梗概,有時候還真不行,需要弄明白就需要深入了解。所以我們再接再厲。
lookupHandleLocked(handle);這句是根據handle查詢得到handle_entry,這個里面存儲著binder。那么這個handle有點像windows下的同名東西,只是個索引用來找到內容實體。

166ProcessState::handle_entry* ProcessState::lookupHandleLocked(int32_t handle)
167{
168    const size_t N=mHandleToObject.size();
169    if (N <= (size_t)handle) {
170        handle_entry e;
171        e.binder = NULL;
172        e.refs = NULL;
173        status_t err = mHandleToObject.insertAt(e, N, handle+1-N);
174        if (err < NO_ERROR) return NULL;
175    }
176    return &mHandleToObject.editItemAt(handle);
177}

注意,這個mHandleToObject是個VectormHandleToObject;在頭文件中有定義。一個數組用來維護handle實體集合,而這些實體里面存放的就是binder。而這些東西都是在ProcessState里面的內容,而ProcessState是個單例,每個進程都唯一有一個。那么好吧,這么理解:每個android進程都存儲一個所有本進程用到的binder的數組。
再繼續看getStrongProxyForHandle,如果handle是0(實際傳遞進來的就是0,0指代的就是servicemanager),那么等于是要獲得servicemanager,這個最基礎的服務,這時候走了一個特殊的過程,IPCThreadState::self()->transact(0, IBinder::PING_TRANSACTION, data, NULL, 0);從字面上看,這里是ping了一下這個binder的內核設備,了解網絡的都知道這個的含義。如果狀態是dead,直接返回null。這些都在查詢到的binder為null的情況下,是null的時候繼續走,會創建一個BpBinder對象,并將其設置到handle_entry里,實際上就是維護在了之前的vector里面保存了下來,下次用直接取。最后返回的就是這個BpBinder,結合之前上文所述,這個BpBinder就是mRemote;
好吧,新的問題來了,BpBinder是什么?
繼續看吧:/frameworks/native/include/binder/BpBinder.h

27class BpBinder : public IBinder

這一句可看出,是從IBinder對象繼承下來的,再看IBinder對象:
/frameworks/native/include/binder/IBinder.h
就是個虛擬類,規范接口。我們在其中看到2句話:

139    virtual BBinder*        localBinder();
140    virtual BpBinder*       remoteBinder();

回來看BpBinder里:

59    virtual BpBinder*   remoteBinder();

看到這里,猜測下,IBinder用來規范所有Binder的接口,但是Binder分為兩類:Server和Client,用localBinder和remoteBinder來區分,那么具體實現IBinder的子類里,你實現哪個接口那么實際上你就是那個類型。
暫時先放下這部分,我們往回倒,回到java層。還記得ServiceManager的getService吧,一切其實是從這里開始的,他返回的是一個IBinder對象,其實我們現在知道就是BpBinder。然后在緩存沒有的情況下進入到ServiceManagerNative.asInterface中,這里會new一個ServiceManagerProxy對象,讓我們再次看看這個對象其中的getService方法,實際上調用的是這個方法:

118    public IBinder getService(String name) throws RemoteException {
119        Parcel data = Parcel.obtain();
120        Parcel reply = Parcel.obtain();
121        data.writeInterfaceToken(IServiceManager.descriptor);
122        data.writeString(name);
123        mRemote.transact(GET_SERVICE_TRANSACTION, data, reply, 0);
124        IBinder binder = reply.readStrongBinder();
125        reply.recycle();
126        data.recycle();
127        return binder;
128    }

mRemote.transact是關鍵,既然我們已經知道就是BpBinder了,那么往下看。
/frameworks/native/libs/binder/BpBinder.cpp

159status_t BpBinder::transact(
160    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
161{
162    // Once a binder has died, it will never come back to life.
163    if (mAlive) {
164        status_t status = IPCThreadState::self()->transact(
165            mHandle, code, data, reply, flags);
166        if (status == DEAD_OBJECT) mAlive = 0;
167        return status;
168    }
169
170    return DEAD_OBJECT;
171}

關鍵用到了IPCThreadState::self()->transact。那么這個IPCThreadState看起來是個線程的對象。在self中new了自己,然后在構造中:

686IPCThreadState::IPCThreadState()
687    : mProcess(ProcessState::self()),
688      mMyThreadId(gettid()),
689      mStrictModePolicy(0),
690      mLastTransactionBinderFlags(0)
691{
692    pthread_setspecific(gTLS, this);
693    clearCaller();
694    mIn.setDataCapacity(256);
695    mOut.setDataCapacity(256);
696}

將進程對象保留下來,并且保留自身當前所在的線程id。那么猜測下,這個線程對象其實是和當前的線程相關聯的,為了每個線程都可訪問binder。并且在上面的self方法中也有處理tls的事情,這里就不貼代碼了。那么BpBinder.transact里面走的是IPCThreadState的transact:
/frameworks/native/libs/binder/IPCThreadState.cpp

548status_t IPCThreadState::transact(int32_t handle,
549                                  uint32_t code, const Parcel& data,
550                                  Parcel* reply, uint32_t flags)
551{
552    status_t err = data.errorCheck();
553
554    flags |= TF_ACCEPT_FDS;
555
556    IF_LOG_TRANSACTIONS() {
557        TextOutput::Bundle _b(alog);
558        alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand "
559            << handle << " / code " << TypeCode(code) << ": "
560            << indent << data << dedent << endl;
561    }
562
563    if (err == NO_ERROR) {
564        LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),
565            (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");
566        err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);
567    }
568
569    if (err != NO_ERROR) {
570        if (reply) reply->setError(err);
571        return (mLastError = err);
572    }
573
574    if ((flags & TF_ONE_WAY) == 0) {
575        #if 0
576        if (code == 4) { // relayout
577            ALOGI(">>>>>> CALLING transaction 4");
578        } else {
579            ALOGI(">>>>>> CALLING transaction %d", code);
580        }
581        #endif
582        if (reply) {
583            err = waitForResponse(reply);
584        } else {
585            Parcel fakeReply;
586            err = waitForResponse(&fakeReply);
587        }
588        #if 0
589        if (code == 4) { // relayout
590            ALOGI("<<<<<< RETURNING transaction 4");
591        } else {
592            ALOGI("<<<<<< RETURNING transaction %d", code);
593        }
594        #endif
595
596        IF_LOG_TRANSACTIONS() {
597            TextOutput::Bundle _b(alog);
598            alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand "
599                << handle << ": ";
600            if (reply) alog << indent << *reply << dedent << endl;
601            else alog << "(none requested)" << endl;
602        }
603    } else {
604        err = waitForResponse(NULL, NULL);
605    }
606
607    return err;
608}

關鍵就一句:writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);在寫入數據。

904status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
905    int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer)
906{
907    binder_transaction_data tr;
908
909    tr.target.ptr = 0; /* Don"t pass uninitialized stack data to a remote process */
910    tr.target.handle = handle;
911    tr.code = code;
912    tr.flags = binderFlags;
913    tr.cookie = 0;
914    tr.sender_pid = 0;
915    tr.sender_euid = 0;
916
917    const status_t err = data.errorCheck();
918    if (err == NO_ERROR) {
919        tr.data_size = data.ipcDataSize();
920        tr.data.ptr.buffer = data.ipcData();
921        tr.offsets_size = data.ipcObjectsCount()*sizeof(binder_size_t);
922        tr.data.ptr.offsets = data.ipcObjects();
923    } else if (statusBuffer) {
924        tr.flags |= TF_STATUS_CODE;
925        *statusBuffer = err;
926        tr.data_size = sizeof(status_t);
927        tr.data.ptr.buffer = reinterpret_cast(statusBuffer);
928        tr.offsets_size = 0;
929        tr.data.ptr.offsets = 0;
930    } else {
931        return (mLastError = err);
932    }
933
934    mOut.writeInt32(cmd);
935    mOut.write(&tr, sizeof(tr));
936
937    return NO_ERROR;
938}

關鍵是最后2句 mOut.writeInt32(cmd);mOut.write(&tr, sizeof(tr));。干嘛呢?就是先寫指令,后寫binder的傳輸數據。然后呢?居然沒有其它處理,好吧,往下看。transcat方法中往后走到waitForResponse,我們來看看:

712status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
713{
714    uint32_t cmd;
715    int32_t err;
716
717    while (1) {
718        if ((err=talkWithDriver()) < NO_ERROR) break;
719        err = mIn.errorCheck();
720        if (err < NO_ERROR) break;
721        if (mIn.dataAvail() == 0) continue;
722
723        cmd = (uint32_t)mIn.readInt32();
724
725        IF_LOG_COMMANDS() {
726            alog << "Processing waitForResponse Command: "
727                << getReturnString(cmd) << endl;
728        }
729
730        switch (cmd) {
731        case BR_TRANSACTION_COMPLETE:
732            if (!reply && !acquireResult) goto finish;
733            break;
734
735        case BR_DEAD_REPLY:
736            err = DEAD_OBJECT;
737            goto finish;
738
739        case BR_FAILED_REPLY:
740            err = FAILED_TRANSACTION;
741            goto finish;
742
743        case BR_ACQUIRE_RESULT:
744            {
745                ALOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT");
746                const int32_t result = mIn.readInt32();
747                if (!acquireResult) continue;
748                *acquireResult = result ? NO_ERROR : INVALID_OPERATION;
749            }
750            goto finish;
751
752        case BR_REPLY:
753            {
754                binder_transaction_data tr;
755                err = mIn.read(&tr, sizeof(tr));
756                ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");
757                if (err != NO_ERROR) goto finish;
758
759                if (reply) {
760                    if ((tr.flags & TF_STATUS_CODE) == 0) {
761                        reply->ipcSetDataReference(
762                            reinterpret_cast(tr.data.ptr.buffer),
763                            tr.data_size,
764                            reinterpret_cast(tr.data.ptr.offsets),
765                            tr.offsets_size/sizeof(binder_size_t),
766                            freeBuffer, this);
767                    } else {
768                        err = *reinterpret_cast(tr.data.ptr.buffer);
769                        freeBuffer(NULL,
770                            reinterpret_cast(tr.data.ptr.buffer),
771                            tr.data_size,
772                            reinterpret_cast(tr.data.ptr.offsets),
773                            tr.offsets_size/sizeof(binder_size_t), this);
774                    }
775                } else {
776                    freeBuffer(NULL,
777                        reinterpret_cast(tr.data.ptr.buffer),
778                        tr.data_size,
779                        reinterpret_cast(tr.data.ptr.offsets),
780                        tr.offsets_size/sizeof(binder_size_t), this);
781                    continue;
782                }
783            }
784            goto finish;
785
786        default:
787            err = executeCommand(cmd);
788            if (err != NO_ERROR) goto finish;
789            break;
790        }
791    }
792
793finish:
794    if (err != NO_ERROR) {
795        if (acquireResult) *acquireResult = err;
796        if (reply) reply->setError(err);
797        mLastError = err;
798    }
799
800    return err;
801}

上來就是一個死循環,然后里面有一句talkWithDriver,后面就直接去讀取mIn的內容了。那么我認為這句是關鍵,在將剛才寫入的數據告知內核驅動,并等待完成數據處理。到底是否正確呢?看代碼:
/frameworks/native/libs/binder/IPCThreadState.cpp

803status_t IPCThreadState::talkWithDriver(bool doReceive)
804{
805    if (mProcess->mDriverFD <= 0) {
806        return -EBADF;
807    }
808
809    binder_write_read bwr;
810
811    // Is the read buffer empty?
812    const bool needRead = mIn.dataPosition() >= mIn.dataSize();
813
814    // We don"t want to write anything if we are still reading
815    // from data left in the input buffer and the caller
816    // has requested to read the next data.
817    const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;
818
819    bwr.write_size = outAvail;
820    bwr.write_buffer = (uintptr_t)mOut.data();
821
822    // This is what we"ll read.
823    if (doReceive && needRead) {
824        bwr.read_size = mIn.dataCapacity();
825        bwr.read_buffer = (uintptr_t)mIn.data();
826    } else {
827        bwr.read_size = 0;
828        bwr.read_buffer = 0;
829    }
830
831    IF_LOG_COMMANDS() {
832        TextOutput::Bundle _b(alog);
833        if (outAvail != 0) {
834            alog << "Sending commands to driver: " << indent;
835            const void* cmds = (const void*)bwr.write_buffer;
836            const void* end = ((const uint8_t*)cmds)+bwr.write_size;
837            alog << HexDump(cmds, bwr.write_size) << endl;
838            while (cmds < end) cmds = printCommand(alog, cmds);
839            alog << dedent;
840        }
841        alog << "Size of receive buffer: " << bwr.read_size
842            << ", needRead: " << needRead << ", doReceive: " << doReceive << endl;
843    }
844
845    // Return immediately if there is nothing to do.
846    if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;
847
848    bwr.write_consumed = 0;
849    bwr.read_consumed = 0;
850    status_t err;
851    do {
852        IF_LOG_COMMANDS() {
853            alog << "About to read/write, write size = " << mOut.dataSize() << endl;
854        }
855#if defined(HAVE_ANDROID_OS)
856        if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)
857            err = NO_ERROR;
858        else
859            err = -errno;
860#else
861        err = INVALID_OPERATION;
862#endif
863        if (mProcess->mDriverFD <= 0) {
864            err = -EBADF;
865        }
866        IF_LOG_COMMANDS() {
867            alog << "Finished read/write, write size = " << mOut.dataSize() << endl;
868        }
869    } while (err == -EINTR);
870
871    IF_LOG_COMMANDS() {
872        alog << "Our err: " << (void*)(intptr_t)err << ", write consumed: "
873            << bwr.write_consumed << " (of " << mOut.dataSize()
874                        << "), read consumed: " << bwr.read_consumed << endl;
875    }
876
877    if (err >= NO_ERROR) {
878        if (bwr.write_consumed > 0) {
879            if (bwr.write_consumed < mOut.dataSize())
880                mOut.remove(0, bwr.write_consumed);
881            else
882                mOut.setDataSize(0);
883        }
884        if (bwr.read_consumed > 0) {
885            mIn.setDataSize(bwr.read_consumed);
886            mIn.setDataPosition(0);
887        }
888        IF_LOG_COMMANDS() {
889            TextOutput::Bundle _b(alog);
890            alog << "Remaining data size: " << mOut.dataSize() << endl;
891            alog << "Received commands from driver: " << indent;
892            const void* cmds = mIn.data();
893            const void* end = mIn.data() + mIn.dataSize();
894            alog << HexDump(cmds, mIn.dataSize()) << endl;
895            while (cmds < end) cmds = printReturnCommand(alog, cmds);
896            alog << dedent;
897        }
898        return NO_ERROR;
899    }
900
901    return err;
902}

先創建一個binder_write_read對象bwr,這個對象是個存儲讀寫內容的對象。然后呢一堆的判斷和日志操作,最重要的一句在這里:if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)。看到這里我想說:他媽的,終于到了。真心虐啊,這里終于看到了曙光,這么n層的調用和各種邏輯中,我們看到了和驅動交互的部分!下面真的該進入到內核驅動部分了,不過先停一下,我們總結下。

我們這篇解釋了remote是什么,與binder的關系,引入了BpBinder的概念(server的binder),不過沒有仔細分析,后面在適當的時候會解釋他與BnBinder的關系。然后說明了線程的IPCThreadState與binder的關系,還有為了支持多線程環境下與其他進程的binder,有必要在這個對象中封裝了與binder內核驅動通訊的內容,需要注意的是transact真正的傳輸數據。然后終于進入了內核驅動的部分。

其實總感覺還是有很多內容沒有提及,我覺得目前先抓主線,我們要分析的是servicemanager以及它怎么利用binder與其他進程交互數據,其實線有很多,先沿著getService走下去,等到這條線明朗一些了,后面我們再看其他的會輕松不少。
下一篇我們再繼續吧。

文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。

轉載請注明本文地址:http://specialneedsforspecialkids.com/yun/65027.html

相關文章

  • android servicemanagerbinder源碼分析二(暫時作廢,后面會重新整理)

    摘要:抱歉,此文暫時作廢,不會使用的刪除功能。我會在后面重新整理后再繼續寫下去。是內部的一個機制,通過設備驅動的協助能夠起到進程間通訊的的作用。這個應該是個全局表,統計所有結構。實際上是保存在打開的設備文件的結構中。目前還未涉及到其他操作,只是。 抱歉,此文暫時作廢,不會使用segmentfault的刪除功能。我會在后面重新整理后再繼續寫下去。 繼續上篇的文,這篇打算進入到android的內...

    Ocean 評論0 收藏0
  • 02.Android之IPC機制問題

    摘要:中為何新增來作為主要的方式運行機制是怎樣的機制有什么優勢運行機制是怎樣的基于通信模式,除了端和端,還有兩角色一起合作完成進程間通信功能。 目錄介紹 2.0.0.1 什么是Binder?為什么要使用Binder?Binder中是如何進行線程管理的?總結binder講的是什么? 2.0.0.2 Android中進程和線程的關系?什么是IPC?為何需要進行IPC?多進程通信可能會出現什么問...

    Donne 評論0 收藏0
  • android servicemanagerbinder源碼分析一 ------ native層的

    摘要:以版本源碼為例。源碼位于下打開驅動設備,將自己作為的管理者,進入循環,作為等待的請求位于首先,建立一個結構體,然后剩下的就是給這個結構體的成員賦值。同屬于這一層,因此我們看看具體內容剛才從驅動設備讀取的的前位取出來作為進行判斷處理。 前一陣子在忙項目,沒什么更新,這次開始寫點android源碼內部的東西分析下。以6.0.1_r10版本android源碼為例。servicemanager...

    馬忠志 評論0 收藏0

發表評論

0條評論

lijy91

|高級講師

TA的文章

閱讀更多
最新活動
閱讀需要支付1元查看
<