摘要:溫習(xí)統(tǒng)計學(xué)的知識為更深層次的學(xué)習(xí)做準(zhǔn)備在的演講中說就是我們理解但不知道另外的是如何的我在臺下想對于那可以理解的我好像都只懂了參考標(biāo)準(zhǔn)高效的流程課程用的是我不想再學(xué)一門類似的語言了我會找出相對應(yīng)的和的來源流程什么是干凈的一個變
Why The "Data Science" Specialization
溫習(xí)統(tǒng)計學(xué)的知識, 為更深層次的學(xué)習(xí)做準(zhǔn)備
Andrew Ng 在 2015 GTC 的演講中說, deep learning 就是 black magic; 我們理解50%, 但不知道另外的50%是如何work的. 我在臺下想, 對于那可以理解的50%, 我好像都只懂了5%.
參考"標(biāo)準(zhǔn)高效"的流程
mine: emacs org mode + emacs magit + bitbucket + python. There must be some room for improvement.
How
課程用的是R. 我不想再學(xué)一門類似的語言了, 我會找出相對應(yīng)的numpy 和 scipy solution.
Getting and Cleaning Data
Raw data 的來源Website APIs
Databases
Json
Raw texts
Data analysis 流程
Raw data --> Processing scripts --> tidy data (often ignored in the classes but really important)
Record the meta data
Record the recipes
--> data analysis (covered in machine learning classes)
--> data communication
什么是干凈的dataEach variable you measure should be in one column, 一個變量占一列.
There should be one table for each "kind" of variable, generally data should be save in one file per table 為什么呢? 管理起來不會麻煩麼?
If you have multiple tables, they should include a column in the table thta allows them to be linked. 參見 dataframe.merge dataframe.join in pandas
The code book代碼簿? (⊙o⊙)…
Info about the variables (including units!)
單位很重要! 沒有單位的測量是沒有物理意義的!
但測量時候必須要考慮的有效位數(shù)在課程中卻沒有提及. 大抵是因為python 和 R 對于有效位數(shù)handle地很好? 不需要像C 里邊一樣考慮 float 或者 double? 某些極端情況下也會需要像sympy這樣的library吧.
Info about the summary choice you made
Info about the experimental study design you used
代碼簿的作用類似于wet lab中的實驗記錄本. 很慶幸很早就知道了emacs 的 org mode, 用在這里很適合. 但是 Info about the variables 的重要性被我忽略了.
如果feature的數(shù)量很多, 而且feature本身意義深刻, 就需要仔細(xì)挑選. 記得一次聽報告, 有家金融公司用decision tree 做portfolio, 算法本身稀松平常, 但是對于具體用了哪些feature, lecturer守口如瓶.
"There are many stages to the design and analysis of a successful study. The last of these steps is the calculation of an inferential statistic such as a P value, and the application of a "decision rule" to it (for example, P < 0.05). In practice, decisions that are made earlier in data analysis have a much greater impact on results — from experimental design to batch effects, lack of adjustment for confounding factors, or simple measurement error. Arbitrary levels of statistical significance can be achieved by changing the ways in which data are cleaned, summarized or modelled."
Leek, Jeffrey T., and Roger D. Peng. "Statistics: P values are just the tip of the iceberg." Nature 520.7549 (2015): 612-612.
Downloading Files我通常都是直接用wget, 但是那樣就不容易整合到腳本中. 幾個很可能會在download時候用到的python function:
# set up the env os.path.dirname(os.path.realpath(__file__)) os.getcwd() os.path.join() os.chdir() os.path.exists() os.makedirs() # dowload urllib.request.urlretrieve() urllib.request.urlopen() # to tag your downloaded files datetime.timezone() datetime.datetime.now() # an example import shutil import ssl import urllib.request as ur def download(myurl): """ download to the current directory """ fn = myurl.split("/")[-1] context = ssl._create_unverified_context() with ur.urlopen(myurl, context=context) as response, open(fn, "wb") as out_file: shutil.copyfileobj(response, out_file) return fnLoading flat files
pandas.read_csv()Reading XML
Here is a very good introduction
Below are my summaries:
python 標(biāo)準(zhǔn)庫中自帶了xml.etree.ElementTree用來解析xml. 其中, ElementTree 表示整個XML文件, Element表示一個node.
The first element in every XML document is called the root element. 一個XML文件只能又一個root, 因此以下的不符合xml規(guī)范:
recursively 遍歷
# an excersice # find all elements with zipcode equals 21231 xml_fn = download("https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Frestaurants.xml") tree = ET.parse(xml_fn) for child in tree.iter(): if child.tag == "zipcode" and child.text == "21231": print(child)JSON
JSON stands for Javascript Object Notation
lightweight data storage
JSON 的格式肉眼看起來就像是nested python dict. python 自帶的json的用法類似pickle.
Pattern MatchingPython makes a distinction between matching and searching. Matching looks only at the start of the target string, whereas searching looks for the pattern anywhere in the target.
Always use raw strings for regx.
Character sets
sth like r"[A-Za-z_]" would match an underscore or any uppercase or lowercase ASCII letter.
Characters that have special meanings in other regular expression contexts do not have special meanings within square brackets. The only character with a special meaning inside square brackets is a ^, and then only if it is the first character after the left (open- ing) bracket.
Summarizing Dataimport pandas as pd df = pd.DataFrame # Look at a bit of the data df.head() df.tail() # summary df.describe() df.quantile() # cov and corr # DataFrame’s corr and cov methods return a full correlation or covariance matrix as a DataFrame, respectively # to calcuate pairwise correlation between a DataFrame"s columns or rows dset.corrwith(dset["Check for missing values"]) # you can write your own analsis function and apply it to the dataframe, for example: f = lambda x: x.max() - x.min() df.apply(f, axis=1)
df.dropna() df.fillna(0) # to modify inplace _ = df.fillna(0, inplace=True) # fill the nan with the mean # 或者用naive bayesian的prediction data.fillna(data.mean())Exploratory Data Analysis Analytic graphics
Principles of Analytic Graphics
Show comparisons
If you build a model that can do some predictions, please come along with the performance of random guess.
Show causality, mechanism, explanation, systematic structure
Show multivariate data
The world is inherently multivariate
Integration of evidence
Describe and document the evidence with appropriate labels, scales, sources, etc.
Simple Summaries of Data
Two dimensions
scatterplots
smooth scatterplots
> 2 dimensions
Overlayed/multiple 2-D plots; coplots
Use color, size, shape to add dimensions
Spinning plots
Actual 3-D plots (not very useful)
Graphics File Devices
pdf: usefule for line-type graphics, resizes well, not efficient if a plot has many objects/points
svg: XML-based scalable vector graphics; supports animation and interactivity, potentially useful for web-based plots
png: bitmapped format, good for line drawings or images with solid colors, uses lossless compression, most web browers can read this format natively, does not resize well
jpeg: good for photographs or natural scenes, uses lossy compression, does not resize well
tiff: bitmapped format, supports lossless compression
Simulation in Rrnorm:generate random Normal variates with a given mean and standard deviation
dnorm: evaluate the Normal probability density (with a given mean/SD) at a point (or vector of points)
pnorm: evaluate the cumulative distribution function for a Normal distribution
d for density
r for random number generation
p for cumulative distribution
q for quantile function
Setting the random number seed with set.seed ensures reproducibility
> set.seed(1) > rnorm(5)
文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請注明本文地址:http://specialneedsforspecialkids.com/yun/37525.html
摘要:該課程旨在面向有抱負(fù)的工程師,從人工智能的基本概念入門到掌握為人工智能解決方案構(gòu)建深度學(xué)習(xí)模型所需技能。 showImg(https://segmentfault.com/img/bVbkP5z?w=800&h=664); 作者 | Jo Stichbury翻譯 | Mika本文為 CDA 數(shù)據(jù)分析師原創(chuàng)作品,轉(zhuǎn)載需授權(quán) 前言 如今人工智能備受追捧,由于傳統(tǒng)軟件團(tuán)隊缺乏AI技能,常常會...
摘要:蠎周刊年度最贊親俺們又來回顧又一個偉大的年份兒包去年最受歡迎的文章和項目如果你錯過了幾期就這一期不會丟失最好的嗯哼還為你和你的準(zhǔn)備了一批紀(jì)念裇從這兒獲取任何時候如果想分享好物給大家在這兒提交喜歡我們收集的任何意見建議通過來吧原文 Title: 蠎周刊 2015 年度最贊Date: 2016-01-09 Tags: Weekly,Pycoder,Zh Slug: issue-198-to...
摘要:我強(qiáng)烈推薦這本書給初學(xué)者,因為本書側(cè)重于統(tǒng)計建模和機(jī)器學(xué)習(xí)的基本概念,并提供詳細(xì)而直觀的解釋。關(guān)于完善簡歷,我推薦以下網(wǎng)站和文章怎樣的作品集能幫助我們找到第一數(shù)據(jù)科學(xué)或機(jī)器學(xué)習(xí)方面的工作簡歷是不夠的,你還需要作品集的支撐。 showImg(https://segmentfault.com/img/bVblJ0R?w=800&h=533); 作者 | Admond Lee翻譯 | Mik...
摘要:以下內(nèi)容摘錄自微博的及熱帖簡稱熱帖,選項標(biāo)準(zhǔn)新發(fā)布實用有趣,根據(jù)項目時間分類,發(fā)布時間不超過的項目會標(biāo)注,無該標(biāo)志則說明項目超過半月。特性可監(jiān)控記錄的正常運(yùn)行時間。服務(wù)器打包為一組微服務(wù),用戶可使用命令輕松使用。 作者:HelloGitHub-小魚干 機(jī)械臂可能在醫(yī)療劇中看過,可以用來...
閱讀 1965·2023-04-25 15:45
閱讀 1197·2021-09-29 09:34
閱讀 2498·2021-09-03 10:30
閱讀 2000·2019-08-30 15:56
閱讀 1456·2019-08-29 15:31
閱讀 1268·2019-08-29 15:29
閱讀 3196·2019-08-29 11:24
閱讀 3047·2019-08-26 13:45