国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

從入門到求職,成為數據科學家的終極指南

yanwei / 3721人閱讀

摘要:我強烈推薦這本書給初學者,因為本書側重于統計建模和機器學習的基本概念,并提供詳細而直觀的解釋。關于完善簡歷,我推薦以下網站和文章怎樣的作品集能幫助我們找到第一數據科學或機器學習方面的工作簡歷是不夠的,你還需要作品集的支撐。

作者 | Admond Lee
翻譯 | Mika
本文為 CDA 數據分析師原創作品,轉載需授權

你想成為一名數據科學家?很棒,說明你是很有上進心的人,而且對數據科學充滿熱情,并希望通過解決復雜的問題為公司帶來價值。但是你在數據科學方面毫無經驗,也不知道如何開始。我很懂你,因為曾經我也是如此。本文就是特別針對熱情且有抱負的數據科學家,解答進入該領域最常見的問題和挑戰。

我希望通過分享我自己的經驗,幫助你了解入科從事數據科學的職業,并為你提供一些指南,讓你的學習之旅更加愉快。讓我們開始吧!

數據科學人才缺口

根據國際數據公司(IDC)預測,2020年全球大數據和業務分析收入將超過2100億美元。

根據LinkedIn 與2018年8月發布的美國勞動力報告, 2015年美國的數據科學人才過剩。三年后,隨著越來越多公司面臨數據科學技能人才的短缺,這一趨勢發生了巨大變化。越來越多的公司開始使用大數據得出分析見解和制定決策。

從經濟角度講,這完全取決于供需關系。

好消息是:形勢以及發生了轉變。壞消息是:隨著數據科學領域的就業機會不斷增加,但很多有抱負的數據科學家由于技能不符合市場的需求,而難以找到心儀的工作。

在接下來的部分中,你將看到該如何提高數據科學技能,從而在大量求職者中脫穎而出,最終收獲夢想的工作。

終極指南

1.需要哪些技能以及如何掌握?

說實話,要掌握數據科學領域所有技能幾乎是不可能的,因為范圍太廣了。總有一些技術是數據科學家沒有掌握的,因為不同的業務需要不同的技能。

但有一些核心技能是數據科學家所必須掌握的。

技術能力,數學和統計學,編程和商業知識。盡管無論使用何種語言,編程能力都是必備的。作為數據科學家,我們應該運用商業溝通能力想企業高層說明模型結果,同時基于數學和統計學的支持。

數學和統計學

關于數學和統計學,可以查看Randy Lao的相關文章,當中的資源非常豐富。

https://medium.com/@randylaosat

當我剛開始學習數據科學時,我讀了這本書 An Introduction to Statistical Learning?—?with Applications in R(統計學習導論 - 與R中的應用)。我強烈推薦這本書給初學者,因為本書側重于統計建模和機器學習的基本概念,并提供詳細而直觀的解釋。如果你特別喜歡數學,也許你更喜歡這本書:The Elements of Statistical Learning(統計學習中的元素)。

編程

關于學習編程,特別是對于沒有經驗的初學者,我建議專注于學習一種語言,我個人更喜歡Python,因為Python更容易學習。關于Python或R哪種語言更好一直都存在爭論,我個人認為重點應放在如何幫助企業解決問題,而不是使用哪種語言。

商業知識

最后,我要強調的是對商業知識的理解也是至關重要的。

軟技能

事實上,軟技能比硬技能更重要。在LinkedIn詢問了2000名商業領袖,我們發現2018年他們最希望員工具備的軟技能包括:領導力、溝通能力、合作能力和時間管理能力。我認為這些軟技能在數據科學家的日常工作中起著至關重要的作用。

2.如何選擇合適的訓練營和在線課程?

隨著人工智能和數據科學的興起,大量課程課程、訓練營如雨后春筍般涌現,都不希望錯失良機。

因此問題來了,該如何選擇適合你的學習資源呢?

我的選擇方法如下:

沒有一門課程能涵蓋你需要的所有資源。有些課程在某些方面是重疊的,因此不值得花錢購買不同但有重復性的課程。

首先要知道你需要學什么。不要因為花哨和吸引人的標題就盲目選擇課程。通過查看求職網站上數據科學家的職位描述,你會發現一些公司需要的通用技能。然后通過了解自己缺乏的技能去搜索相應課程。

比較不同平臺提供的優質課程。類比幾個課程,并且查看其他人的評論(非常重要!)。另一方面,Coursera、Udemy、Lynda、Codecademy、DataCamp、Dataquest等平臺也提供許多免費課程。

以下是我個人特別喜歡的一些課程:

1.Machine Learning ,主講人: Coursera的聯合創始人吳恩達

2.Python for Data Science and Machine Learning Bootcamp,主講人 :Jose Portilla

3.Deep Learning A-Z?: Hands-On Artificial Neural Networks,主講人: Kirill Eremenko,Hadelin de Ponteves

4.Python for Data Science Essential Training ,主講人:Lillian Pierson

5.The Ultimate Hands-On Hadoop?—?Tame your Big Data,主講人:Frank Kane

3.能否通過開源學習成為數據科學家?

我想說的是,通過開源學習足以讓你開始從事數據科學,之后可以根據業務需求進一步發展自己的職業生涯。

4.對于零基礎的初學者有什么推薦的書籍嗎?

沒有固定的學習途徑,條條大路通羅馬。閱讀相關書籍是掌握基礎知識的良好。

注意不要試圖去記憶具體的數學和算法細節,因為當應用于實際問題進行編程時,你可能會忘記這些內容。

你只需了解一定的基礎知識,并繼續學習,要務實。不要試圖完全了解所有知識,因為有時完美主義會給你的學習拖后腿。

關于Python、機器學習和深度學習的基礎知識,我推薦以下書籍:

Learning Python

Python for Data Analysis

An Introduction to Statistical Learning

Machine Learning for Absolute Beginners

Python Machine Learning

Python Data Science Handbook

Introduction to Machine Learning with Python

Deep Learning with Python

Deep Learning with Keras

5.如何在理解商業問題(制定解決方案)和提高技術技能(編程、數學知識等)之間取得平衡?

在理解商業問題和制定解決方案之前,我首先去提高自己的技術技能。

商業問題在于”是什么”和”為什么”。要解決商業問題,首先必須解決問題。而技術技能是注重于”怎么做”。我的建議主要基于個人經驗。

6.如何克服開啟數據科學家職業生涯的挑戰?

對于許多數據科學家來說,主要挑戰就是數據科學是信息的海洋。我們可能失去方向,因為有太多的建議和資源,大量的在線課程、研討會等等,你需要保持專注,知道你擁有什么,你需要什么。

在我的數據科學歷程中,我主要通過這些方法克服這些挑戰:

有效地篩選學習資源

在剛開始時,我因為大量的資源感到困惑。通過聽數據科學家的播客,閱讀如何開啟數據科學領域的文章,嘗試不同在線課程。最終我關注我在本文中分享的這些優質資源。

不要放棄

當學習過程太過艱難時,我開始懷疑自己,我真的有能力做到嗎?我追求的道理是正確的嗎?最終對數據科學的熱情和耐心讓我重新開始,繼續不斷努力和前行。

獲得數據科學相關的工作

由于就業市場競爭激烈,找到心儀的數據科學工作對我來說并非易事。我提交了大量的簡歷都毫無結果。因此我開始改進找工作的方法,參加聚會和研討會,在網上分享我的學習經歷,在招聘會上于潛在雇主接觸等等。

7.如何有效地在簡歷中加入自己的工作經驗,從而提高被錄用的幾率?

這是一種誤解,你并不能通過簡歷中的經驗就被聘用。事實上,簡歷是面試的敲門磚。

因此,學習如何寫簡歷對于獲得面試機會至關重要。研究表明,招聘人員在確定求職者是否適合該職位時,平均看簡歷的時間僅為6秒。

關于完善簡歷,我推薦以下網站和文章:

Vault

TopResume

Optimize Guide

A Resume Expert Gives Career Advice

https://www.facebook.com/busi...

How to Pass the 6-Second Resume Test

https://www.topresume.com/car...

How to tailor your Academic CV for Data Science roles

https://www.linkedin.com/puls...

What do Hiring Managers Look For in a Data Scientist’s CV?

https://www.linkedin.com/puls...

The 14 Things You Need On Your Resume To Land Your Dream Job

https://www.elitedaily.com/mo...

8.怎樣的作品集能幫助我們找到第一數據科學或機器學習方面的工作?

簡歷是不夠的,你還需要作品集的支撐。在看了簡歷之后,招聘人員希望更多地了解你的背景,這時就需要作品集了。

可以試著在社交媒體平臺分享自己的學習經歷,寫文章和做播客都是不錯的選擇。

更多資源

學習平臺 :

Towards Data Science, Quora, DZone, KDnuggets, Analytics Vidhya, DataTau, fast.ai

推薦視頻:

Webinars——Data Science Office Hours, Data Science Connect, Humans of Data Science (HoDS)

推薦文章:

A Badass’s Guide to Breaking Into Data

http://www.data-mania.com/blo...

10 Must Have Data Science Skills

https://www.kdnuggets.com/201...

My Data Science & Machine Learning, Beginner’s Learning Path

https://www.linkedin.com/puls...

24 Ultimate Data Science Projects To Boost Your Knowledge and Skills

https://www.analyticsvidhya.c...

值得關注的數據科學家

LinkedIn上的數據科學社區非常棒,以下是我認為值得關注的數據科學家和專業人士:

Randy Lao

Kyle McKiou

Favio Vázquez

Vin Vashishta

Eric Weber

Sarah Nooravi

Kate Strachnyi

Tarry Singh

Karthikeyan P.T.R.

Megan Silvey

Imaad Mohamed Khan

Andreas Kretz

Andriy Burkov

Carla Gentry

Nic Ryan

Beau Walker

結語

希望本文能夠解決你的問題。每當你在數據科學旅程中遇到任何障礙,快要放棄時請記住,堅持是關鍵。

文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。

轉載請注明本文地址:http://specialneedsforspecialkids.com/yun/19877.html

相關文章

  • 成為數據學家入門項目

    摘要:基于大量的數據統計,網球是一種很好的預測類體育項目。數據科學家根據歷史數據和玩家信息來構建預測模型,并將結果與博彩公司的評估進行比較。目標是找出機器學習模型與博彩公司評估之間的差距,從而有機會獲勝。這是一個很好的實際數據科學項目。 作者:chen_h微信號 & QQ:862251340微信公眾號:coderpai簡書地址:https://www.jianshu.com/p/56c......

    Julylovin 評論0 收藏0
  • 編程書單:十本Python編程語言入門書籍

    摘要:本文與大家分享一些編程語言的入門書籍,其中不乏經典。全書貫穿的主體是如何思考設計開發的方法,而具體的編程語言,只是提供一個具體場景方便介紹的媒介。入門入門容易理解而且讀起來幽默風趣,對于編程初學者和語言新手而言是理想的書籍。 本文與大家分享一些Python編程語言的入門書籍,其中不乏經典。我在這里分享的,大部分是這些書的英文版,如果有中文版的我也加上了。有關書籍的介紹,大部分截取自是官...

    desdik 評論0 收藏0

發表評論

0條評論

最新活動
閱讀需要支付1元查看
<