回答:網絡層抓包用wireshark,http抓包用burpsuite,二者所有界面化的操作系統都有,windows,linux,mac。下面幾個回答網上抄的一模一樣,也是醉了,一看就沒真正用過,把我氣出來了。burp雖然在win下可以被fiddler代替,但是ui設計我更欣賞burp,純屬個人愛好。linux和mac下的fiddler安裝和使用上都不好,畢竟.net開發,相比較java開發的burp更...
回答:大家好,我們以java排序算法為例,來看看面試中常見的算法第一、基數排序算法該算法將數值按照個位數拆分進行位數比較,具體代碼如下:第二、桶排序算法該算法將數值序列分成最大值+1個桶子,然后遞歸將數值塞進對應值的桶里,具體代碼如下:第三、計數排序算法該算法計算數值序列中每個數值出現的次數,然后存放到單獨的數組中計數累加,具體代碼如下:第四、堆排序算法該算法將數值序列中最大值挑選出來,然后通過遞歸將剩...
回答:1. 如果你對數據的讀寫要求極高,并且你的數據規模不大,也不需要長期存儲,選redis;2. 如果你的數據規模較大,對數據的讀性能要求很高,數據表的結構需要經常變,有時還需要做一些聚合查詢,選MongoDB;3. 如果你需要構造一個搜索引擎或者你想搞一個看著高大上的數據可視化平臺,并且你的數據有一定的分析價值或者你的老板是土豪,選ElasticSearch;4. 如果你需要存儲海量數據,連你自己都...
回答:我們已經上線了好幾個.net core的項目,基本上都是docker+.net core 2/3。說實話,.net core的GC非常的優秀,基本上不需要像做Java時候,還要做很多的優化。因此沒有多少人研究很正常。換句話,如果一個GC還要做很多優化,這肯定不是好的一個GC。當然平時編程的時候,常用的非托管的對象處理等等還是要必須掌握的。
...線性數據分析的有偏估計回歸方法,實質上是一種改良的最小二乘估計法,通過放棄最小二乘法的無偏性,以損失部分信息、降低精度為代價獲得回歸系數更為符合實際、更可靠的回歸方法,對病態數據的擬合要強于最小二乘法...
...線性數據分析的有偏估計回歸方法,實質上是一種改良的最小二乘估計法,通過放棄最小二乘法的無偏性,以損失部分信息、降低精度為代價獲得回歸系數更為符合實際、更可靠的回歸方法,對病態數據的擬合要強于最小二乘法...
...der ConvexityOperations Preserve Convexity二次規劃問題(QP)案例:最小二乘問題項目作業:投資組合優化第三周:凸優化問題常見的凸優化問題類別半定規劃問題幾何規劃問題非凸函數的優化松弛化(Relaxation)整數規劃(Integer Programming)...
...,這種原則稱為正則化。 一般來說,監督學習可以看做最小化下面的目標函數.其中,第一項L(yi,f(xi;w)) 衡量我們的模型(分類或者回歸)對第i個樣本的預測值f(xi;w)和真實的標簽yi之前的誤差.第二項,也就是對參數w的規則化函...
定義 假設函數與代價函數(損失函數) 特征量放縮 最小化代價函數 收斂判定 1.什么是線性回歸 在統計學中,線性回歸是利用被稱為線性回歸方程的最小平方函數對一個或多個自變量和因變量之間的關系進行建模的一種回歸...
...連續體,而不僅僅是神經網絡。 在前面的文章中,普通最小二乘算法完成了這一工作,它發現了使誤差平方和(即最小二乘)最小化的系數組合。??我們的神經網絡回歸器會做同樣的事情。 它將迭代訓練數據提取特征值,計...
ChatGPT和Sora等AI大模型應用,將AI大模型和算力需求的熱度不斷帶上新的臺階。哪里可以獲得...
大模型的訓練用4090是不合適的,但推理(inference/serving)用4090不能說合適,...
圖示為GPU性能排行榜,我們可以看到所有GPU的原始相關性能圖表。同時根據訓練、推理能力由高到低做了...