回答:pandas是python一個非常著名的數據處理庫,內置了大量函數和類型,可以快速讀取日常各種文件,包括txt,csv,excel,json,mysql等,為機器學習模型提供樣本輸入(包括數據預處理等),下面我簡單介紹一下這個庫的使用,以讀取這5種類型文件為例:txt這里直接使用read_csv函數讀取就行(早期版本中可以使用read_table函數),測試代碼如下,非常簡單,第一個參數為讀取的t...
回答:在日常開發運維工作中,經常會遇到多臺服務器上的數據同步問題,特別是集群部署時,如果不是自動化同步數據,全靠人工同步那工作量就會很大。Linux的文件同步工具 RsyncRsync是Linux系統下的一款數據備份工具,使用它可以增量備份,不光光支持本地復制還支持遠程同步,功能十分強大。1、Rsync優點:Rsync在第一次同步時是全量同步,后面同步時只會傳輸修改過的文件;在傳輸過程中還可以進行壓縮傳...
回答:在互聯網企業中,多數項目可能都是按照兩周一迭代的節奏去開發的,甚至不少項目都是日發布。發布項目看上去很簡單,但項目一多、各種線上線下環境的配置還是很瑣屑的,對于這類重復性工作是否可以自動化呢?這里就是我們要了解的Jenkins了。Jenkins是什么?Jenkins是當下被廣泛使用的持續構建的可視化Web工具,它是用Java語言開發的,通過Jenkins可以將各類項目的編譯、打包、分發、部署都變成...
...現,將冷數據轉移到公共云系統比繼續將其存儲在自己的數據中心上成本要低很多。如果數據已經存儲在公共云中,那么使用基于云計算的機器學習服務通常也是有意義的。將大量數據從一個地方遷移到另一個地方可能會花費大...
...現,將冷數據轉移到公共云系統比繼續將其存儲在自己的數據中心上成本要低很多。如果數據已經存儲在公共云中,那么使用基于云計算的機器學習服務通常也是有意義的。將大量數據從一個地方遷移到另一個地方可能會花費大...
... 前言 只有光頭才能變強 沒錯,這篇主要跟大家一起入門機器學習。作為一個開發者,人工智能肯定是聽過的。作為一個開發面試者,肯定也會見過機器學習這個崗位(反正我校招的時候就遇到過)。 可能還會聽過或者見...
關于機器學習這個話題,我相信我這個公眾號1500多位關注者里,一定有很多朋友的水平比Jerry高得多。如果您看過我以前兩篇文章,您就會發現,我對機器學習僅僅停留在會使用API的層面上。 使用Java程序消費SAP Leonardo的機...
...,就沒必要看其余文章,直接跳到下一個就行了。 統計機器學習 基礎知識 AILearning 第1章_基礎知識 CS229 中文筆記 一、引言 CS229 中文筆記 三、線性代數回顧 機器學習基石 1 -- The Learning Problem 機器學習基石 2 -- Learning to Answer Yes/...
...度下降是為了更好的優化代價函數(損失函數),不管是機器學習還是深度學習,總會需要優化代價函數。2.設計網絡結構以更好的提取特征。增加神經網絡隱藏層就能提取更高層次特征,卷積神經網絡能提取空間上的特征,循...
前言 機器學習和深度學習現在很火!突然間每個人都在討論它們-不管大家明不明白它們的不同! 不管你是否積極緊貼數據分析,你都應該聽說過它們。 正好展示給你要關注它們的點,這里是它們關鍵詞的google指數: ...
...責人,關注深度學習在自然語言處理方面的應用。?聊天機器人(也可以稱為語音助手、聊天助手、對話機器人等)是目前非常熱的一個人工智能研發與產品方向。很多大型互聯網公司投入重金研發相關技術,并陸續推出了相關...
ChatGPT和Sora等AI大模型應用,將AI大模型和算力需求的熱度不斷帶上新的臺階。哪里可以獲得...
大模型的訓練用4090是不合適的,但推理(inference/serving)用4090不能說合適,...
圖示為GPU性能排行榜,我們可以看到所有GPU的原始相關性能圖表。同時根據訓練、推理能力由高到低做了...