国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

一文讓你徹底理解 Java NIO 核心組件

guyan0319 / 2866人閱讀

摘要:的出現解決了這尷尬的問題,非阻塞模式下,通過,我們的線程只為已就緒的通道工作,不用盲目的重試了。注意要將注冊到,首先需要將設置為非阻塞模式,否則會拋異常。

同步、異步、阻塞、非阻塞
首先,這幾個概念非常容易搞混淆,但NIO中又有涉及,所以總結一下[1]。

同步:API調用返回時調用者就知道操作的結果如何了(實際讀取/寫入了多少字節)。

異步:相對于同步,API調用返回時調用者不知道操作的結果,后面才會回調通知結果。

阻塞:當無數據可讀,或者不能寫入所有數據時,掛起當前線程等待。

非阻塞:讀取時,可以讀多少數據就讀多少然后返回,寫入時,可以寫入多少數據就寫入多少然后返回。

對于I/O操作,根據Oracle官網的文檔,同步異步的劃分標準是“調用者是否需要等待I/O操作完成”,這個“等待I/O操作完成”的意思不是指一定要讀取到數據或者說寫入所有數據,而是指真正進行I/O操作時,比如數據在TCP/IP協議棧緩沖區和JVM緩沖區之間傳輸的這段時間,調用者是否要等待。

所以,我們常用的 read() 和 write() 方法都是同步I/O,同步I/O又分為阻塞和非阻塞兩種模式,如果是非阻塞模式,檢測到無數據可讀時,直接就返回了,并沒有真正執行I/O操作。

總結就是,Java中實際上只有 同步阻塞I/O、同步非阻塞I/O 與 異步I/O 三種機制,我們下文所說的是前兩種,JDK 1.7才開始引入異步 I/O,那稱之為NIO.2。

傳統IO

我們知道,一個新技術的出現總是伴隨著改進和提升,Java NIO的出現亦如此。

傳統 I/O 是阻塞式I/O,主要問題是系統資源的浪費。比如我們為了讀取一個TCP連接的數據,調用 InputStream 的 read() 方法,這會使當前線程被掛起,直到有數據到達才被喚醒,那該線程在數據到達這段時間內,占用著內存資源(存儲線程棧)卻無所作為,也就是俗話說的占著茅坑不拉屎,為了讀取其他連接的數據,我們不得不啟動另外的線程。在并發連接數量不多的時候,這可能沒什么問題,然而當連接數量達到一定規模,內存資源會被大量線程消耗殆盡。另一方面,線程切換需要更改處理器的狀態,比如程序計數器、寄存器的值,因此非常頻繁的在大量線程之間切換,同樣是一種資源浪費。

隨著技術的發展,現代操作系統提供了新的I/O機制,可以避免這種資源浪費。基于此,誕生了Java NIO,NIO的代表性特征就是非阻塞I/O。緊接著我們發現,簡單的使用非阻塞I/O并不能解決問題,因為在非阻塞模式下,read()方法在沒有讀取到數據時就會立即返回,不知道數據何時到達的我們,只能不停的調用read()方法進行重試,這顯然太浪費CPU資源了,從下文可以知道,Selector組件正是為解決此問題而生。

Java NIO 核心組件 1.Channel 概念

Java NIO中的所有I/O操作都基于Channel對象,就像流操作都要基于Stream對象一樣,因此很有必要先了解Channel是什么。以下內容摘自JDK 1.8的文檔

A channel represents an open connection to an entity such as a
hardware device, a file, a network socket, or a program component that
is capable of performing one or more distinct I/O operations, for
example reading or writing.

從上述內容可知,一個Channel(通道)代表和某一實體的連接,這個實體可以是文件、網絡套接字等。也就是說,通道是Java NIO提供的一座橋梁,用于我們的程序和操作系統底層I/O服務進行交互。

通道是一種很基本很抽象的描述,和不同的I/O服務交互,執行不同的I/O操作,實現不一樣,因此具體的有FileChannel、SocketChannel等。

通道使用起來跟Stream比較像,可以讀取數據到Buffer中,也可以把Buffer中的數據寫入通道。

當然,也有區別,主要體現在如下兩點:

一個通道,既可以讀又可以寫,而一個Stream是單向的(所以分 InputStream 和 OutputStream)

通道有非阻塞I/O模式

實現

Java NIO中最常用的通道實現是如下幾個,可以看出跟傳統的 I/O 操作類是一一對應的。

FileChannel:讀寫文件

DatagramChannel: UDP協議網絡通信

SocketChannel:TCP協議網絡通信

ServerSocketChannel:監聽TCP連接

2.Buffer

NIO中所使用的緩沖區不是一個簡單的byte數組,而是封裝過的Buffer類,通過它提供的API,我們可以靈活的操縱數據,下面細細道來。

與Java基本類型相對應,NIO提供了多種 Buffer 類型,如ByteBuffer、CharBuffer、IntBuffer等,區別就是讀寫緩沖區時的單位長度不一樣(以對應類型的變量為單位進行讀寫)。

Buffer中有3個很重要的變量,它們是理解Buffer工作機制的關鍵,分別是

capacity (總容量)

position (指針當前位置)

limit (讀/寫邊界位置)

Buffer的工作方式跟C語言里的字符數組非常的像,類比一下,capacity就是數組的總長度,position就是我們讀/寫字符的下標變量,limit就是結束符的位置。Buffer初始時3個變量的情況如下圖

在對Buffer進行讀/寫的過程中,position會往后移動,而 limit 就是 position 移動的邊界。由此不難想象,在對Buffer進行寫入操作時,limit應當設置為capacity的大小,而對Buffer進行讀取操作時,limit應當設置為數據的實際結束位置。(注意:將Buffer數據 寫入 通道是Buffer 讀取 操作,從通道 讀取 數據到Buffer是Buffer 寫入 操作)

在對Buffer進行讀/寫操作前,我們可以調用Buffer類提供的一些輔助方法來正確設置 position 和 limit 的值,主要有如下幾個

flip(): 設置 limit 為 position 的值,然后 position 置為0。對Buffer進行讀取操作前調用。

rewind(): 僅僅將 position
置0。一般是在重新讀取Buffer數據前調用,比如要讀取同一個Buffer的數據寫入多個通道時會用到。

clear(): 回到初始狀態,即 limit 等于 capacity,position 置0。重新對Buffer進行寫入操作前調用。

compact(): 將未讀取完的數據(position 與 limit 之間的數據)移動到緩沖區開頭,并將 position
設置為這段數據末尾的下一個位置。其實就等價于重新向緩沖區中寫入了這么一段數據。

然后,看一個實例,使用 FileChannel 讀寫文本文件,通過這個例子驗證通道可讀可寫的特性以及Buffer的基本用法(注意 FileChannel 不能設置為非阻塞模式)。

FileChannel channel = new RandomAccessFile("test.txt", "rw").getChannel();
channel.position(channel.size());  // 移動文件指針到末尾(追加寫入)

ByteBuffer byteBuffer = ByteBuffer.allocate(20);

// 數據寫入Buffer
byteBuffer.put("你好,世界!
".getBytes(StandardCharsets.UTF_8));

// Buffer -> Channel
byteBuffer.flip();
while (byteBuffer.hasRemaining()) {
    channel.write(byteBuffer);
}

channel.position(0); // 移動文件指針到開頭(從頭讀取)
CharBuffer charBuffer = CharBuffer.allocate(10);
CharsetDecoder decoder = StandardCharsets.UTF_8.newDecoder();

// 讀出所有數據
byteBuffer.clear();
while (channel.read(byteBuffer) != -1 || byteBuffer.position() > 0) {
    byteBuffer.flip();

    // 使用UTF-8解碼器解碼
    charBuffer.clear();
    decoder.decode(byteBuffer, charBuffer, false);
    System.out.print(charBuffer.flip().toString());

    byteBuffer.compact(); // 數據可能有剩余
}

channel.close();

這個例子中使用了兩個Buffer,其中 byteBuffer 作為通道讀寫的數據緩沖區,charBuffer 用于存儲解碼后的字符。clear() 和 flip() 的用法正如上文所述,需要注意的是最后那個 compact() 方法,即使 charBuffer 的大小完全足以容納 byteBuffer 解碼后的數據,這個 compact() 也必不可少,這是因為常用中文字符的UTF-8編碼占3個字節,因此有很大概率出現在中間截斷的情況,請看下圖:

當 Decoder 讀取到緩沖區末尾的 0xe4 時,無法將其映射到一個 Unicode,decode()方法第三個參數 false 的作用就是讓 Decoder 把無法映射的字節及其后面的數據都視作附加數據,因此 decode() 方法會在此處停止,并且 position 會回退到 0xe4 的位置。如此一來, 緩沖區中就遺留了“中”字編碼的第一個字節,必須將其 compact 到前面,以正確的和后序數據拼接起來。

BTW,例子中的 CharsetDecoder 也是 Java NIO 的一個新特性,所以大家應該發現了一點哈,NIO的操作是面向緩沖區的(傳統I/O是面向流的)。

至此,我們了解了 Channel 與 Buffer 的基本用法。接下來要說的是讓一個線程管理多個Channel的重要組件。

3.Selector Selector 是什么

Selector(選擇器)是一個特殊的組件,用于采集各個通道的狀態(或者說事件)。我們先將通道注冊到選擇器,并設置好關心的事件,然后就可以通過調用select()方法,靜靜地等待事件發生。

通道有如下4個事件可供我們監聽:

Accept:有可以接受的連接

Connect:連接成功

Read:有數據可讀

Write:可以寫入數據了

為什么要用Selector

前文說了,如果用阻塞I/O,需要多線程(浪費內存),如果用非阻塞I/O,需要不斷重試(耗費CPU)。Selector的出現解決了這尷尬的問題,非阻塞模式下,通過Selector,我們的線程只為已就緒的通道工作,不用盲目的重試了。比如,當所有通道都沒有數據到達時,也就沒有Read事件發生,我們的線程會在select()方法處被掛起,從而讓出了CPU資源。

使用方法

如下所示,創建一個Selector,并注冊一個Channel。

注意:要將 Channel 注冊到 Selector,首先需要將 Channel 設置為非阻塞模式,否則會拋異常。

Selector selector = Selector.open();
channel.configureBlocking(false);
SelectionKey key = channel.register(selector, SelectionKey.OP_READ);

register()方法的第二個參數名叫“interest set”,也就是你所關心的事件集合。如果你關心多個事件,用一個“按位或運算符”分隔,比如

SelectionKey.OP_READ | SelectionKey.OP_WRITE復制代碼

這種寫法一點都不陌生,支持位運算的編程語言里都這么玩,用一個整型變量可以標識多種狀態,它是怎么做到的呢,其實很簡單,舉個例子,首先預定義一些常量,它們的值(二進制)如下

可以發現,它們值為1的位都是錯開的,因此對它們進行按位或運算之后得出的值就沒有二義性,可以反推出是由哪些變量運算而來。怎么判斷呢,沒錯,就是“按位與”運算。比如,現在有一個狀態集合變量值為 0011,我們只需要判斷 “0011 & OP_READ” 的值是 1 還是 0 就能確定集合是否包含 OP_READ 狀態。

然后,注意 register() 方法返回了一個SelectionKey的對象,這個對象包含了本次注冊的信息,我們也可以通過它修改注冊信息。從下面完整的例子中可以看到,select()之后,我們也是通過獲取一個 SelectionKey 的集合來獲取到那些狀態就緒了的通道。

一個完整實例

概念和理論的東西闡述完了(其實寫到這里,我發現沒寫出多少東西,好尷尬(⊙?⊙)),看一個完整的例子吧。

這個例子使用Java NIO實現了一個單線程的服務端,功能很簡單,監聽客戶端連接,當連接建立后,讀取客戶端的消息,并向客戶端響應一條消息。

需要注意的是,我用字符 ‘0′(一個值為0的字節) 來標識消息結束。

單線程Server
public class NioServer {

public static void main(String[] args) throws IOException {
    // 創建一個selector
    Selector selector = Selector.open();

    // 初始化TCP連接監聽通道
    ServerSocketChannel listenChannel = ServerSocketChannel.open();
    listenChannel.bind(new InetSocketAddress(9999));
    listenChannel.configureBlocking(false);
    // 注冊到selector(監聽其ACCEPT事件)
    listenChannel.register(selector, SelectionKey.OP_ACCEPT);

    // 創建一個緩沖區
    ByteBuffer buffer = ByteBuffer.allocate(100);

    while (true) {
        selector.select(); //阻塞,直到有監聽的事件發生
        Iterator keyIter = selector.selectedKeys().iterator();

        // 通過迭代器依次訪問select出來的Channel事件
        while (keyIter.hasNext()) {
            SelectionKey key = keyIter.next();

            if (key.isAcceptable()) { // 有連接可以接受
                SocketChannel channel = ((ServerSocketChannel) key.channel()).accept();
                channel.configureBlocking(false);
                channel.register(selector, SelectionKey.OP_READ);

                System.out.println("與【" + channel.getRemoteAddress() + "】建立了連接!");

            } else if (key.isReadable()) { // 有數據可以讀取
                buffer.clear();

                // 讀取到流末尾說明TCP連接已斷開,
                // 因此需要關閉通道或者取消監聽READ事件
                // 否則會無限循環
                if (((SocketChannel) key.channel()).read(buffer) == -1) {
                    key.channel().close();
                    continue;
                } 

                // 按字節遍歷數據
                buffer.flip();
                while (buffer.hasRemaining()) {
                    byte b = buffer.get();

                    if (b == 0) { // 客戶端消息末尾的