PostOrder
public class Solution { // Important, when you pop a node, ensure its children are traversed. public ListpostorderTraversal(TreeNode root) { ArrayDeque s = new ArrayDeque(); List ans = new ArrayList (); TreeNode cur = root; while (cur != null || !s.isEmpty()) { while (cur != null) { s.push(cur); cur = cur.left; } while (!s.isEmpty() && cur == s.peek().right) { cur = s.pop(); ans.add(cur.val); } if (s.isEmpty()) cur = null; else cur = s.peek().right; } return ans; } }
PreOrder
public class Solution { public ListpreorderTraversal(TreeNode root) { List res = new LinkedList (); ArrayDeque stk = new ArrayDeque (); TreeNode cur = root; while(cur != null || !stk.isEmpty()){ if(cur != null) { stk.push(cur); res.add(cur.val); // add val before going to children cur = cur.left; } else { TreeNode node = stk.pop(); cur = node.right; } } return res; } }
InOrder
public class Solution { public ListinorderTraversal(TreeNode root) { List res = new ArrayList (); if(root == null) return res; ArrayDeque stk = new ArrayDeque (); TreeNode cur = root; while(cur != null || !stk.isEmpty()){ if(cur !=null) { stk.push(cur); cur = cur.left; } else { TreeNode node = stk.pop(); res.add(node.val); // add after all left children node = node.right; } } return res; } }
PreOrder
public class Solution { public ListpreorderTraversal(TreeNode root) { List res = new LinkedList (); ArrayDeque stk = new ArrayDeque (); if(root == null) return res; TreeNode cur = root; stk.push(cur); while(!stk.isEmpty()){ cur = stk.pop(); res.add(cur.val); if(cur.right != null) stk.push(cur.right); if(cur.left != null) stk.push(cur.left); } return res; } }
InOrder
public class Solution { public ListinorderTraversal(TreeNode root) { List res = new ArrayList (); if(root == null) return res; ArrayDeque stk = new ArrayDeque (); TreeNode cur = root; while(cur != null || !stk.isEmpty()){ while(cur != null) { stk.push(cur); cur = cur.left; } cur = stk.pop(); res.add(cur.val); cur = cur.right; } return res; } }
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://specialneedsforspecialkids.com/yun/66538.html
摘要:棧迭代復(fù)雜度時(shí)間空間遞歸棧空間對(duì)于二叉樹(shù)思路用迭代法做深度優(yōu)先搜索的技巧就是使用一個(gè)顯式聲明的存儲(chǔ)遍歷到節(jié)點(diǎn),替代遞歸中的進(jìn)程棧,實(shí)際上空間復(fù)雜度還是一樣的。對(duì)于先序遍歷,我們出棧頂節(jié)點(diǎn),記錄它的值,然后將它的左右子節(jié)點(diǎn)入棧,以此類推。 Binary Tree Preorder Traversal Given a binary tree, return the preorder tr...
摘要:解題思路層次遍歷二叉樹(shù),我們采用隊(duì)列,本題的注意點(diǎn)是需要分割出每一層的序列,所以在從隊(duì)列中取元素之前,我們要先記錄隊(duì)列的大小,以表示這一層中節(jié)點(diǎn)的個(gè)數(shù)。 Binary Tree Level Order TraversalGiven a binary tree, return the level order traversal of its nodes values. (ie, from...
摘要:二分法復(fù)雜度時(shí)間空間思路我們先考察先序遍歷序列和中序遍歷序列的特點(diǎn)。對(duì)于中序遍歷序列,根在中間部分,從根的地方分割,前半部分是根的左子樹(shù),后半部分是根的右子樹(shù)。 Construct Binary Tree from Preorder and Inorder Traversal Given preorder and inorder traversal of a tree, constru...
摘要:題目要求對(duì)于一棵樹(shù)進(jìn)行序遍歷。水平遍歷即遍歷結(jié)束當(dāng)前行以后再遍歷下一行,并將每行的結(jié)果按行填入到數(shù)組中返回。利用水平遍歷的話,我們只需要知道當(dāng)前元素在樹(shù)中的高度就可以知道應(yīng)當(dāng)插入到那個(gè)數(shù)組中。 題目要求 Given a binary tree, return the level order traversal of its nodes values. (ie, from left to...
摘要:題目地址嗯,經(jīng)典的題目,中序遍歷二叉樹(shù)。代碼如下中序遍歷先序遍歷后序遍歷是不是簡(jiǎn)單的不要不要的,遞歸就是這么美。右孩子后壓棧全部釋放出來(lái)嗯,總的來(lái)說(shuō)用迭代遍歷確實(shí)燒腦,沒(méi)什么性能上的特殊需求還是用遞歸寫法吧,對(duì)程序員友好哦。 94. Binary Tree Inorder Traversal Given a binary tree, return the inorder travers...
429. N-ary Tree Level Order Traversal Given an n-ary tree, return the level order traversal of its nodes values. (ie, from left to right, level by level). For example, given a 3-ary tree:showImg(https...
閱讀 1259·2021-10-11 10:57
閱讀 2045·2021-09-02 15:15
閱讀 1607·2019-08-30 15:56
閱讀 1195·2019-08-30 15:55
閱讀 1157·2019-08-30 15:44
閱讀 977·2019-08-29 12:20
閱讀 1321·2019-08-29 11:12
閱讀 1066·2019-08-28 18:29