国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

利用線性回歸模型進行衛星軌道預報

Wuv1Up / 3387人閱讀

摘要:數據問題解所有數據平均值平均值回歸方程回歸方程回歸系數估計軌道文件回歸系數預測結果回歸系數預測

數據
300,21182.88,-7044.56,14639.48
600,21707.87,-6930.28,13906.68
900,22207.04,-6828.65,13147.66
1200,22679.16,-6738.66,12363.84
1500,23123.06,-6659.23,11556.71
1800,23537.69,-6589.21,10727.78
2100,23922.07,-6527.40,9878.61
2400,24275.33,-6472.54,9010.81
2700,24596.67,-6423.32,8126.00
3000,24885.42,-6378.40,7225.86
3300,25141.01,-6336.41,6312.08
3600,25362.96,-6295.93,5386.38
3900,25550.92,-6255.54,4450.51
問題



def read_m(path):
    #  所有數據
    m = []
    # x
    xlist = []
    # y
    ylist = []
    # z
    zlist = []
    # time
    time_list = []

    with open(path, "r") as f:
        for i in f.readlines():
            aa = i.replace("
", "").split(",")
            bb = [eval(a) for a in aa]
            m.append(bb)
            time_list.append(bb[0])
            xlist.append(bb[1])
            ylist.append(bb[2])
            zlist.append(bb[3])
    return {
        "alldata": m,
        "time": time_list,
        "x": xlist,
        "y": ylist,
        "z": zlist,
    }


XXX = None
YYY = None


def xpj():
    """
    X平均值
    :return:
    """
    sum = 0

    for i in range(XXX.__len__()):
        sum += XXX[i]

    return sum / XXX.__len__()


def ypj():
    """
    Y 平均值
    :return:
    """
    sum = 0

    for i in range(YYY.__len__()):
        sum += YYY[i]

    return sum / YYY.__len__()


def sse():
    """
    回歸方程
    :return:
    """
    sum = 0
    xa = xpj()
    ya = ypj()

    for i in range(XXX.__len__()):
        sum += (XXX[i] - xa) * (YYY[i] - ya)

    return sum


def ssx():
    """
    回歸方程
    :return:
    """
    sum = 0
    xa = xpj()
    for i in range(XXX.__len__()):
        sum += (XXX[i] - xa) * (XXX[i] - xa)
    return sum


def getbeta1():
    """
    bate1
    :return:
    """
    bbeta = sse() / ssx()
    return bbeta


def getbeta0():
    """
    beta0
    :return:
    """
    return ypj() - getbeta1() * xpj()


def huiguixishu(x, y):
    """
    回歸系數
    :param x:
    :param y:
    :return:
    """
    global XXX
    global YYY
    XXX = x
    YYY = y

    beta1 = getbeta1()
    beta0 = getbeta0()
    return [beta0, beta1]


def predic(x, beta0, beta1):
    """
    估計
    :param x:
    :param beta0:
    :param beta1:
    :return:
    """
    a = beta0 + beta1 * x
    return a


if __name__ == "__main__":
    d = read_m("軌道文件.txt")
    tm = d["time"]
    x = d["x"]
    y = d["y"]
    z = d["z"]


    print("========回歸系數=========")
    a = huiguixishu(tm, x)
    b = huiguixishu(tm, y)
    c = huiguixishu(tm, z)

    print(a)
    print(b)
    print(c)

    print("========預測=========")
    guji_time = [4200,4500,4800]
    beta0_list = [a[0],b[0],c[0]]
    beta1_list = [a[1],b[1],c[1]]

    for i in range(guji_time.__len__()):
        x = predic(guji_time[i],beta0_list[0],beta1_list[0])
        y = predic(guji_time[i],beta0_list[1],beta1_list[1])
        z = predic(guji_time[i],beta0_list[2],beta1_list[2])

        print(guji_time[i],format(x,"0.3f") ,format(y,"0.3f"),format(z,"0.3f"))
結果
========回歸系數=========
[21146.959615384614, 1.2183738095238088]
[-7019.398461538461, 0.21143040293040288]
[15712.87576923077, -2.8401093406593407]
========預測=========
4200 26264.130 -6131.391 3784.417
4500 26629.642 -6067.962 2932.384
4800 26995.154 -6004.533 2080.351

文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。

轉載請注明本文地址:http://specialneedsforspecialkids.com/yun/44820.html

相關文章

  • 入門級解讀:小白也能看懂的TensorFlow介紹

    摘要:成本函數成本對于線性回歸,成本函數是表示每個預測值與其預期結果之間的聚合差異的某些函數對于邏輯回歸,是計算每次預測的正確或錯誤的某些函數。成本函數的變換涉及到預測結果和實際結果之間數值距離的任何函數都不能作為成本函數。 矩陣和多特征線性回歸快速回顧之前文章的前提是:給定特征——任何房屋面積(sqm),我們需要預測結果,也就是對應房價($)。為了做到這一點,我們:我們找到一條「最擬合」所有數據...

    felix0913 評論0 收藏0

發表評論

0條評論

最新活動
閱讀需要支付1元查看
<