国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

Python 語法速覽與實戰清單

sumory / 655人閱讀

摘要:本文是對于現代開發語法基礎與工程實踐的總結,更多相關資料參考學習與實踐資料索引本文參考了,等。

本文是對于 現代 Python 開發:語法基礎與工程實踐的總結,更多 Python 相關資料參考 Python 學習與實踐資料索引;本文參考了 Python Crash Course - Cheat Sheets,pysheeet 等。本文僅包含筆者在日常工作中經常使用的,并且認為較為關鍵的知識點與語法,如果想要進一步學習 Python 相關內容或者對于機器學習與數據挖掘方向感興趣,可以參考程序猿的數據科學與機器學習實戰手冊。

基礎語法

Python 是一門高階、動態類型的多范式編程語言;定義 Python 文件的時候我們往往會先聲明文件編碼方式:

# 指定腳本調用方式
#!/usr/bin/env python
# 配置 utf-8 編碼
# -*- coding: utf-8 -*-

# 配置其他編碼
# -*- coding:  -*-

# Vim 中還可以使用如下方式
# vim:fileencoding=

人生苦短,請用 Python,大量功能強大的語法糖的同時讓很多時候 Python 代碼看上去有點像偽代碼。譬如我們用 Python 實現的簡易的快排相較于 Java 會顯得很短小精悍:

def quicksort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[len(arr) / 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    return quicksort(left) + middle + quicksort(right)
    
print quicksort([3,6,8,10,1,2,1])
# Prints "[1, 1, 2, 3, 6, 8, 10]"
控制臺交互

可以根據 __name__ 關鍵字來判斷是否是直接使用 python 命令執行某個腳本,還是外部引用;Google 開源的 fire 也是不錯的快速將某個類封裝為命令行工具的框架:

import fire

class Calculator(object):
  """A simple calculator class."""

  def double(self, number):
    return 2 * number

if __name__ == "__main__":
  fire.Fire(Calculator)

# python calculator.py double 10  # 20
# python calculator.py double --number=15  # 30

Python 2 中 print 是表達式,而 Python 3 中 print 是函數;如果希望在 Python 2 中將 print 以函數方式使用,則需要自定義引入:

from __future__ import print_function

我們也可以使用 pprint 來美化控制臺輸出內容:

import pprint

stuff = ["spam", "eggs", "lumberjack", "knights", "ni"]
pprint.pprint(stuff)

# 自定義參數
pp = pprint.PrettyPrinter(depth=6)
tup = ("spam", ("eggs", ("lumberjack", ("knights", ("ni", ("dead",("parrot", ("fresh fruit",))))))))
pp.pprint(tup)
模塊

Python 中的模塊(Module)即是 Python 源碼文件,其可以導出類、函數與全局變量;當我們從某個模塊導入變量時,函數名往往就是命名空間(Namespace)。而 Python 中的包(Package)則是模塊的文件夾,往往由 __init__.py 指明某個文件夾為包:

# 文件目錄
someDir/
    main.py
    siblingModule.py

# siblingModule.py

def siblingModuleFun():
    print("Hello from siblingModuleFun")
    
def siblingModuleFunTwo():
    print("Hello from siblingModuleFunTwo")

import siblingModule
import siblingModule as sibMod

sibMod.siblingModuleFun()

from siblingModule import siblingModuleFun
siblingModuleFun()

try:
    # Import "someModuleA" that is only available in Windows
    import someModuleA
except ImportError:
    try:
        # Import "someModuleB" that is only available in Linux
        import someModuleB
    except ImportError:

Package 可以為某個目錄下所有的文件設置統一入口:

someDir/
    main.py
    subModules/
        __init__.py
        subA.py
        subSubModules/
            __init__.py
            subSubA.py

# subA.py

def subAFun():
    print("Hello from subAFun")
    
def subAFunTwo():
    print("Hello from subAFunTwo")

# subSubA.py

def subSubAFun():
    print("Hello from subSubAFun")
    
def subSubAFunTwo():
    print("Hello from subSubAFunTwo")

# __init__.py from subDir

# Adds "subAFun()" and "subAFunTwo()" to the "subDir" namespace 
from .subA import *

# The following two import statement do the same thing, they add "subSubAFun()" and "subSubAFunTwo()" to the "subDir" namespace. The first one assumes "__init__.py" is empty in "subSubDir", and the second one, assumes "__init__.py" in "subSubDir" contains "from .subSubA import *".

# Assumes "__init__.py" is empty in "subSubDir"
# Adds "subSubAFun()" and "subSubAFunTwo()" to the "subDir" namespace
from .subSubDir.subSubA import *

# Assumes "__init__.py" in "subSubDir" has "from .subSubA import *"
# Adds "subSubAFun()" and "subSubAFunTwo()" to the "subDir" namespace
from .subSubDir import *
# __init__.py from subSubDir

# Adds "subSubAFun()" and "subSubAFunTwo()" to the "subSubDir" namespace
from .subSubA import *

# main.py

import subDir

subDir.subAFun() # Hello from subAFun
subDir.subAFunTwo() # Hello from subAFunTwo
subDir.subSubAFun() # Hello from subSubAFun
subDir.subSubAFunTwo() # Hello from subSubAFunTwo
表達式與控制流 條件選擇

Python 中使用 if、elif、else 來進行基礎的條件選擇操作:

if x < 0:
     x = 0
     print("Negative changed to zero")
 elif x == 0:
     print("Zero")
 else:
     print("More")

Python 同樣支持 ternary conditional operator:

a if condition else b

也可以使用 Tuple 來實現類似的效果:

# test 需要返回 True 或者 False
(falseValue, trueValue)[test]

# 更安全的做法是進行強制判斷
(falseValue, trueValue)[test == True]

# 或者使用 bool 類型轉換函數
(falseValue, trueValue)[bool()]
循環遍歷

for-in 可以用來遍歷數組與字典:

words = ["cat", "window", "defenestrate"]

for w in words:
    print(w, len(w))

# 使用數組訪問操作符,能夠迅速地生成數組的副本
for w in words[:]:
    if len(w) > 6:
        words.insert(0, w)

# words -> ["defenestrate", "cat", "window", "defenestrate"]

如果我們希望使用數字序列進行遍歷,可以使用 Python 內置的 range 函數:

a = ["Mary", "had", "a", "little", "lamb"]

for i in range(len(a)):
    print(i, a[i])
基本數據類型

可以使用內建函數進行強制類型轉換(Casting):

int(str)
float(str)
str(int)
str(float)
Number: 數值類型
x = 3
print type(x) # Prints ""
print x       # Prints "3"
print x + 1   # Addition; prints "4"
print x - 1   # Subtraction; prints "2"
print x * 2   # Multiplication; prints "6"
print x ** 2  # Exponentiation; prints "9"
x += 1
print x  # Prints "4"
x *= 2
print x  # Prints "8"
y = 2.5
print type(y) # Prints ""
print y, y + 1, y * 2, y ** 2 # Prints "2.5 3.5 5.0 6.25"
布爾類型

Python 提供了常見的邏輯操作符,不過需要注意的是 Python 中并沒有使用 &&、|| 等,而是直接使用了英文單詞。

t = True
f = False
print type(t) # Prints ""
print t and f # Logical AND; prints "False"
print t or f  # Logical OR; prints "True"
print not t   # Logical NOT; prints "False"
print t != f  # Logical XOR; prints "True" 
String: 字符串

Python 2 中支持 Ascii 碼的 str() 類型,獨立的 unicode() 類型,沒有 byte 類型;而 Python 3 中默認的字符串為 utf-8 類型,并且包含了 byte 與 bytearray 兩個字節類型:

type("Guido") # string type is str in python2
# 

# 使用 __future__ 中提供的模塊來降級使用 Unicode
from __future__ import unicode_literals
type("Guido") # string type become unicode
# 

Python 字符串支持分片、模板字符串等常見操作:

var1 = "Hello World!"
var2 = "Python Programming"

print "var1[0]: ", var1[0]
print "var2[1:5]: ", var2[1:5]
# var1[0]:  H
# var2[1:5]:  ytho

print "My name is %s and weight is %d kg!" % ("Zara", 21)
# My name is Zara and weight is 21 kg!
str[0:4]
len(str)

string.replace("-", " ")
",".join(list)
"hi {0}".format("j")
str.find(",")
str.index(",")   # same, but raises IndexError
str.count(",")
str.split(",")

str.lower()
str.upper()
str.title()

str.lstrip()
str.rstrip()
str.strip()

str.islower()
# 移除所有的特殊字符
re.sub("[^A-Za-z0-9]+", "", mystring) 

如果需要判斷是否包含某個子字符串,或者搜索某個字符串的下標:

# in 操作符可以判斷字符串
if "blah" not in somestring: 
    continue

# find 可以搜索下標
s = "This be a string"
if s.find("is") == -1:
    print "No "is" here!"
else:
    print "Found "is" in the string."
Regex: 正則表達式
import re

# 判斷是否匹配
re.match(r"^[aeiou]", str)

# 以第二個參數指定的字符替換原字符串中內容
re.sub(r"^[aeiou]", "?", str)
re.sub(r"(xyz)", r"1", str)

# 編譯生成獨立的正則表達式對象
expr = re.compile(r"^...$")
expr.match(...)
expr.sub(...)

下面列舉了常見的表達式使用場景:

# 檢測是否為 HTML 標簽
re.search("<[^/>][^>]*>", "")

# 常見的用戶名密碼
re.match("^[a-zA-Z0-9-_]{3,16}$", "Foo") is not None
re.match("^w|[-_]{3,16}$", "Foo") is not None

# Email
re.match("^([a-z0-9_.-]+)@([da-z.-]+).([a-z.]{2,6})$", "hello.world@example.com")

# Url
exp = re.compile(r"""^(https?://)? # match http or https
                ([da-z.-]+)            # match domain
                .([a-z.]{2,6})         # match domain
                ([/w .-]*)/?$        # match api or file
                """, re.X)
exp.match("www.google.com")

# IP 地址
exp = re.compile(r"""^(?:(?:25[0-5]
                     |2[0-4][0-9]
                     |[1]?[0-9][0-9]?).){3}
                     (?:25[0-5]
                     |2[0-4][0-9]
                     |[1]?[0-9][0-9]?)$""", re.X)
exp.match("192.168.1.1")
集合類型 List: 列表 Operation: 創建增刪

list 是基礎的序列類型:

l = []
l = list()

# 使用字符串的 split 方法,可以將字符串轉化為列表
str.split(".")

# 如果需要將數組拼裝為字符串,則可以使用 join 
list1 = ["1", "2", "3"]
str1 = "".join(list1)

# 如果是數值數組,則需要先進行轉換
list1 = [1, 2, 3]
str1 = "".join(str(e) for e in list1)

可以使用 append 與 extend 向數組中插入元素或者進行數組連接

x = [1, 2, 3]

x.append([4, 5]) # [1, 2, 3, [4, 5]]

x.extend([4, 5]) # [1, 2, 3, 4, 5],注意 extend 返回值為 None

可以使用 pop、slices、del、remove 等移除列表中元素:

myList = [10,20,30,40,50]

# 彈出第二個元素
myList.pop(1) # 20
# myList: myList.pop(1)

# 如果不加任何參數,則默認彈出最后一個元素
myList.pop()

# 使用 slices 來刪除某個元素
a = [  1, 2, 3, 4, 5, 6 ]
index = 3 # Only Positive index
a = a[:index] + a[index+1 :]

# 根據下標刪除元素
myList = [10,20,30,40,50]
rmovIndxNo = 3
del myList[rmovIndxNo] # myList: [10, 20, 30, 50]

# 使用 remove 方法,直接根據元素刪除
letters = ["a", "b", "c", "d", "e"]
numbers.remove(numbers[1])
print(*letters) # used a * to make it unpack you don"t have to
Iteration: 索引遍歷

你可以使用基本的 for 循環來遍歷數組中的元素,就像下面介個樣紙:

animals = ["cat", "dog", "monkey"]
for animal in animals:
    print animal
# Prints "cat", "dog", "monkey", each on its own line.

如果你在循環的同時也希望能夠獲取到當前元素下標,可以使用 enumerate 函數:

animals = ["cat", "dog", "monkey"]
for idx, animal in enumerate(animals):
    print "#%d: %s" % (idx + 1, animal)
# Prints "#1: cat", "#2: dog", "#3: monkey", each on its own line

Python 也支持切片(Slices):

nums = range(5)    # range is a built-in function that creates a list of integers
print nums         # Prints "[0, 1, 2, 3, 4]"
print nums[2:4]    # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"
print nums[2:]     # Get a slice from index 2 to the end; prints "[2, 3, 4]"
print nums[:2]     # Get a slice from the start to index 2 (exclusive); prints "[0, 1]"
print nums[:]      # Get a slice of the whole list; prints ["0, 1, 2, 3, 4]"
print nums[:-1]    # Slice indices can be negative; prints ["0, 1, 2, 3]"
nums[2:4] = [8, 9] # Assign a new sublist to a slice
print nums         # Prints "[0, 1, 8, 9, 4]"
Comprehensions: 變換

Python 中同樣可以使用 map、reduce、filter,map 用于變換數組:

# 使用 map 對數組中的每個元素計算平方
items = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x**2, items))

# map 支持函數以數組方式連接使用
def multiply(x):
    return (x*x)
def add(x):
    return (x+x)

funcs = [multiply, add]
for i in range(5):
    value = list(map(lambda x: x(i), funcs))
    print(value)

reduce 用于進行歸納計算:

# reduce 將數組中的值進行歸納

from functools import reduce
product = reduce((lambda x, y: x * y), [1, 2, 3, 4])

# Output: 24

filter 則可以對數組進行過濾:

number_list = range(-5, 5)
less_than_zero = list(filter(lambda x: x < 0, number_list))
print(less_than_zero)

# Output: [-5, -4, -3, -2, -1]
字典類型 創建增刪
d = {"cat": "cute", "dog": "furry"}  # 創建新的字典
print d["cat"]       # 字典不支持點(Dot)運算符取值

如果需要合并兩個或者多個字典類型:

# python 3.5
z = {**x, **y}

# python 2.7
def merge_dicts(*dict_args):
    """
    Given any number of dicts, shallow copy and merge into a new dict,
    precedence goes to key value pairs in latter dicts.
    """
    result = {}
    for dictionary in dict_args:
        result.update(dictionary)
    return result
索引遍歷

可以根據鍵來直接進行元素訪問:

# Python 中對于訪問不存在的鍵會拋出 KeyError 異常,需要先行判斷或者使用 get
print "cat" in d     # Check if a dictionary has a given key; prints "True"

# 如果直接使用 [] 來取值,需要先確定鍵的存在,否則會拋出異常
print d["monkey"]  # KeyError: "monkey" not a key of d

# 使用 get 函數則可以設置默認值
print d.get("monkey", "N/A")  # Get an element with a default; prints "N/A"
print d.get("fish", "N/A")    # Get an element with a default; prints "wet"


d.keys() # 使用 keys 方法可以獲取所有的鍵

可以使用 for-in 來遍歷數組:

# 遍歷鍵
for key in d:

# 比前一種方式慢
for k in dict.keys(): ...

# 直接遍歷值
for value in dict.itervalues(): ...

# Python 2.x 中遍歷鍵值
for key, value in d.iteritems():

# Python 3.x 中遍歷鍵值
for key, value in d.items():
其他序列類型 集合
# Same as {"a", "b","c"}
normal_set = set(["a", "b","c"])
 
# Adding an element to normal set is fine
normal_set.add("d")
 
print("Normal Set")
print(normal_set)
 
# A frozen set
frozen_set = frozenset(["e", "f", "g"])
 
print("Frozen Set")
print(frozen_set)
 
# Uncommenting below line would cause error as
# we are trying to add element to a frozen set
# frozen_set.add("h")
函數 函數定義

Python 中的函數使用 def 關鍵字進行定義,譬如:

def sign(x):
    if x > 0:
        return "positive"
    elif x < 0:
        return "negative"
    else:
        return "zero"


for x in [-1, 0, 1]:
    print sign(x)
# Prints "negative", "zero", "positive"

Python 支持運行時創建動態函數,也即是所謂的 lambda 函數:

def f(x): return x**2

# 等價于
g = lambda x: x**2
參數 Option Arguments: 不定參數
def example(a, b=None, *args, **kwargs):
  print a, b
  print args
  print kwargs

example(1, "var", 2, 3, word="hello")
# 1 var
# (2, 3)
# {"word": "hello"}

a_tuple = (1, 2, 3, 4, 5)
a_dict = {"1":1, "2":2, "3":3}
example(1, "var", *a_tuple, **a_dict)
# 1 var
# (1, 2, 3, 4, 5)
# {"1": 1, "2": 2, "3": 3}
生成器
def simple_generator_function():
    yield 1
    yield 2
    yield 3

for value in simple_generator_function():
    print(value)

# 輸出結果
# 1
# 2
# 3
our_generator = simple_generator_function()
next(our_generator)
# 1
next(our_generator)
# 2
next(our_generator)
#3

# 生成器典型的使用場景譬如無限數組的迭代
def get_primes(number):
    while True:
        if is_prime(number):
            yield number
        number += 1
裝飾器

裝飾器是非常有用的設計模式:

# 簡單裝飾器

from functools import wraps
def decorator(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        print("wrap function")
        return func(*args, **kwargs)
    return wrapper

@decorator
def example(*a, **kw):
    pass

example.__name__  # attr of function preserve
# "example"
# Decorator 

# 帶輸入值的裝飾器

from functools import wraps
def decorator_with_argument(val):
  def decorator(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
      print "Val is {0}".format(val)
      return func(*args, **kwargs)
    return wrapper
  return decorator

@decorator_with_argument(10)
def example():
  print "This is example function."

example()
# Val is 10
# This is example function.

# 等價于

def example():
  print "This is example function."

example = decorator_with_argument(10)(example)
example()
# Val is 10
# This is example function.
類與對象 類定義

Python 中對于類的定義也很直接:

class Greeter(object):
    
    # Constructor
    def __init__(self, name):
        self.name = name  # Create an instance variable
        
    # Instance method
    def greet(self, loud=False):
        if loud:
            print "HELLO, %s!" % self.name.upper()
        else:
            print "Hello, %s" % self.name
        
g = Greeter("Fred")  # Construct an instance of the Greeter class
g.greet()            # Call an instance method; prints "Hello, Fred"
g.greet(loud=True)   # Call an instance method; prints "HELLO, FRED!"
# isinstance 方法用于判斷某個對象是否源自某個類
ex = 10
isinstance(ex,int)
Managed Attributes: 受控屬性
# property、setter、deleter 可以用于復寫點方法

class Example(object):
    def __init__(self, value):
       self._val = value
    @property
    def val(self):
        return self._val
    @val.setter
    def val(self, value):
        if not isintance(value, int):
            raise TypeError("Expected int")
        self._val = value
    @val.deleter
    def val(self):
        del self._val
    @property
    def square3(self):
        return 2**3

ex = Example(123)
ex.val = "str"
# Traceback (most recent call last):
#   File "", line 1, in
#   File "test.py", line 12, in val
#     raise TypeError("Expected int")
# TypeError: Expected int
類方法與靜態方法
class example(object):
  @classmethod
  def clsmethod(cls):
    print "I am classmethod"
  @staticmethod
  def stmethod():
    print "I am staticmethod"
  def instmethod(self):
    print "I am instancemethod"

ex = example()
ex.clsmethod()
# I am classmethod
ex.stmethod()
# I am staticmethod
ex.instmethod()
# I am instancemethod
example.clsmethod()
# I am classmethod
example.stmethod()
# I am staticmethod
example.instmethod()
# Traceback (most recent call last):
#   File "", line 1, in
# TypeError: unbound method instmethod() ...
對象 實例化 屬性操作

Python 中對象的屬性不同于字典鍵,可以使用點運算符取值,直接使用 in 判斷會存在問題:

class A(object):
    @property
    def prop(self):
        return 3

a = A()
print ""prop" in a.__dict__ =", "prop" in a.__dict__
print "hasattr(a, "prop") =", hasattr(a, "prop")
print "a.prop =", a.prop

# "prop" in a.__dict__ = False
# hasattr(a, "prop") = True
# a.prop = 3

建議使用 hasattr、getattr、setattr 這種方式對于對象屬性進行操作:

class Example(object):
  def __init__(self):
    self.name = "ex"
  def printex(self):
    print "This is an example"


# Check object has attributes
# hasattr(obj, "attr")
ex = Example()
hasattr(ex,"name")
# True
hasattr(ex,"printex")
# True
hasattr(ex,"print")
# False

# Get object attribute
# getattr(obj, "attr")
getattr(ex,"name")
# "ex"

# Set object attribute
# setattr(obj, "attr", value)
setattr(ex,"name","example")
ex.name
# "example"
異常與測試 異常處理 Context Manager - with

with 常用于打開或者關閉某些資源:

host = "localhost"
port = 5566
with Socket(host, port) as s:
    while True:
        conn, addr = s.accept()
        msg = conn.recv(1024)
        print msg
        conn.send(msg)
        conn.close()
單元測試
from __future__ import print_function

import unittest

def fib(n):
    return 1 if n<=2 else fib(n-1)+fib(n-2)

def setUpModule():
        print("setup module")
def tearDownModule():
        print("teardown module")

class TestFib(unittest.TestCase):

    def setUp(self):
        print("setUp")
        self.n = 10
    def tearDown(self):
        print("tearDown")
        del self.n
    @classmethod
    def setUpClass(cls):
        print("setUpClass")
    @classmethod
    def tearDownClass(cls):
        print("tearDownClass")
    def test_fib_assert_equal(self):
        self.assertEqual(fib(self.n), 55)
    def test_fib_assert_true(self):
        self.assertTrue(fib(self.n) == 55)

if __name__ == "__main__":
    unittest.main()
存儲 文件讀寫 路徑處理

Python 內置的 __file__ 關鍵字會指向當前文件的相對路徑,可以根據它來構造絕對路徑,或者索引其他文件:

# 獲取當前文件的相對目錄
dir = os.path.dirname(__file__) # srcapp

## once you"re at the directory level you want, with the desired directory as the final path node:
dirname1 = os.path.basename(dir) 
dirname2 = os.path.split(dir)[1] ## if you look at the documentation, this is exactly what os.path.basename does.

# 獲取當前代碼文件的絕對路徑,abspath 會自動根據相對路徑與當前工作空間進行路徑補全
os.path.abspath(os.path.dirname(__file__)) # D:WorkSpaceOWS	oolui-tool-svnpythonsrcapp

# 獲取當前文件的真實路徑
os.path.dirname(os.path.realpath(__file__)) # D:WorkSpaceOWS	oolui-tool-svnpythonsrcapp

# 獲取當前執行路徑
os.getcwd()

可以使用 listdir、walk、glob 模塊來進行文件枚舉與檢索:

# 僅列舉所有的文件
from os import listdir
from os.path import isfile, join
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))]

# 使用 walk 遞歸搜索
from os import walk

f = []
for (dirpath, dirnames, filenames) in walk(mypath):
    f.extend(filenames)
    break

# 使用 glob 進行復雜模式匹配
import glob
print(glob.glob("/home/adam/*.txt"))
# ["/home/adam/file1.txt", "/home/adam/file2.txt", .... ]
簡單文件讀寫
# 可以根據文件是否存在選擇寫入模式
mode = "a" if os.path.exists(writepath) else "w"

# 使用 with 方法能夠自動處理異常
with open("file.dat",mode) as f:
    f.write(...)
    ...
    # 操作完畢之后記得關閉文件
    f.close()

# 讀取文件內容
message = f.read()
復雜格式文件 JSON
import json

# Writing JSON data
with open("data.json", "w") as f:
     json.dump(data, f)

# Reading data back
with open("data.json", "r") as f:
     data = json.load(f)
XML

我們可以使用 lxml 來解析與處理 XML 文件,本部分即對其常用操作進行介紹。lxml 支持從字符串或者文件中創建 Element 對象:

from lxml import etree

# 可以從字符串開始構造
xml = ""
root = etree.fromstring(xml)
etree.tostring(root)
# b""

# 也可以從某個文件開始構造
tree = etree.parse("doc/test.xml")

# 或者指定某個 baseURL
root = etree.fromstring(xml, base_url="http://where.it/is/from.xml")

其提供了迭代器以對所有元素進行遍歷:

# 遍歷所有的節點
for tag in tree.iter():
    if not len(tag):
        print tag.keys() # 獲取所有自定義屬性
        print (tag.tag, tag.text) # text 即文本子元素值

# 獲取 XPath
for e in root.iter():
    print tree.getpath(e)

lxml 支持以 XPath 查找元素,不過需要注意的是,XPath 查找的結果是數組,并且在包含命名空間的情況下,需要指定命名空間:

root.xpath("http://page/text/text()",ns={prefix:url})

# 可以使用 getparent 遞歸查找父元素
el.getparent()

lxml 提供了 insert、append 等方法進行元素操作:

# append 方法默認追加到尾部
st = etree.Element("state", name="New Mexico")
co = etree.Element("county", name="Socorro")
st.append(co)

# insert 方法可以指定位置
node.insert(0, newKid)
Excel

可以使用 [xlrd]() 來讀取 Excel 文件,使用 xlsxwriter 來寫入與操作 Excel 文件。

# 讀取某個 Cell 的原始值
sh.cell(rx, col).value
# 創建新的文件
workbook = xlsxwriter.Workbook(outputFile)
worksheet = workbook.add_worksheet()

# 設置從第 0 行開始寫入
row = 0

# 遍歷二維數組,并且將其寫入到 Excel 中
for rowData in array:
    for col, data in enumerate(rowData):
        worksheet.write(row, col, data)
    row = row + 1

workbook.close()
文件系統

對于高級的文件操作,我們可以使用 Python 內置的 shutil

# 遞歸刪除 appName 下面的所有的文件夾
shutil.rmtree(appName)
網絡交互 Requests

Requests 是優雅而易用的 Python 網絡請求庫:

import requests

r = requests.get("https://api.github.com/events")
r = requests.get("https://api.github.com/user", auth=("user", "pass"))

r.status_code
# 200
r.headers["content-type"]
# "application/json; charset=utf8"
r.encoding
# "utf-8"
r.text
# u"{"type":"User"..."
r.json()
# {u"private_gists": 419, u"total_private_repos": 77, ...}

r = requests.put("http://httpbin.org/put", data = {"key":"value"})
r = requests.delete("http://httpbin.org/delete")
r = requests.head("http://httpbin.org/get")
r = requests.options("http://httpbin.org/get")
數據存儲 MySQL
import pymysql.cursors

# Connect to the database
connection = pymysql.connect(host="localhost",
                             user="user",
                             password="passwd",
                             db="db",
                             charset="utf8mb4",
                             cursorclass=pymysql.cursors.DictCursor)

try:
    with connection.cursor() as cursor:
        # Create a new record
        sql = "INSERT INTO `users` (`email`, `password`) VALUES (%s, %s)"
        cursor.execute(sql, ("webmaster@python.org", "very-secret"))

    # connection is not autocommit by default. So you must commit to save
    # your changes.
    connection.commit()

    with connection.cursor() as cursor:
        # Read a single record
        sql = "SELECT `id`, `password` FROM `users` WHERE `email`=%s"
        cursor.execute(sql, ("webmaster@python.org",))
        result = cursor.fetchone()
        print(result)
finally:
    connection.close()

文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。

轉載請注明本文地址:http://specialneedsforspecialkids.com/yun/44479.html

相關文章

  • Python語法覽與機器學習開發環境搭建

    摘要:語法速覽與機器學習開發環境搭建從屬于筆者的程序猿的數據科學與機器學習實戰手冊,如果希望了解更多關于數據科學與機器學習知識體系結構,推薦閱讀我的技術體系結構圖面向程序猿的數據科學與機器學習知識體系及資料合集。 Python語法速覽與機器學習開發環境搭建從屬于筆者的程序猿的數據科學與機器學習實戰手冊,如果希望了解更多關于數據科學與機器學習知識體系結構,推薦閱讀2016:我的技術體系結構圖:...

    Simon 評論0 收藏0

發表評論

0條評論

最新活動
閱讀需要支付1元查看
<