摘要:和,容器中的這三個文件不存在于鏡像,而是存在于,在啟動容器的時候,通過的形式將這些文件掛載到容器內部。
基于docker1.7.03.1單機上部署hadoop2.7.3分布式集群
[TOC]
聲明文章均為本人技術筆記,轉載請注明出處:
[1] https://segmentfault.com/u/yzwall
[2] blog.csdn.net/j_dark/
PC:ubuntu 16.04.1 LTS
Docker version:17.03.1-ce OS/Arch:linux/amd64
Hadoop version:hadoop-2.7.3
1 docker中配置構建hadoop鏡像 1.1 創建docker容器container創建基于ubuntu鏡像的容器container,官方默認下載ubuntu最新精簡版鏡像;
sudo docker run -ti container ubuntu
修改默認源文件/etc/apt/source.list,用國內源代替官方源;
1.3 安裝java8# docker鏡像為了精簡容量,刪除了許多ubuntu自帶組件,通過`apt-get update`更新獲得 apt-get update apt-get install software-properties-common python-software-properties # add-apt-repository apt-get install software-properties-commonapt-get install software-properties-common # add-apt-repository add-apt-repository ppa:webupd8team/java apt-get update apt-get install oracle-java8-installer java -version1.4 docker中安裝hadoop-2.7.3 1.4.1 下載hadoop-2.7.3源碼
# 創建多級目錄 mkdir -p /software/apache/hadoop cd /software/apache/hadoop # 下載并解壓hadoop wget http://mirrors.sonic.net/apache/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz tar xvzf hadoop-2.7.3.tar.gz1.4.2 配置環境變量
修改~/.bashrc文件。在文件末尾加入下面配置信息:
export JAVA_HOME=/usr/lib/jvm/java-8-oracle export HADOOP_HOME=/software/apache/hadoop/hadoop-2.7.3 export HADOOP_CONFIG_HOME=$HADOOP_HOME/etc/hadoop export PATH=$PATH:$HADOOP_HOME/bin export PATH=$PATH:$HADOOP_HOME/sbin
source ~/.bashrc使環境變量配置生效;
注意:完成./bashrc文件配置后,hadoop-env.sh無需再配置;
配置hadoop主要配置core-site.xml、hdfs-site.xml、mapred-site.xml, yarn-site.xml三個文件;
在$HADOOP_HOME下創建namenode, datanode和tmp目錄
cd $HADOOP_HOME mkdir tmp mkdir namenode mkdir datanode1.5.1 配置core.site.xml
配置項hadoop.tmp.dir指向tmp目錄
配置項fs.default.name指向master節點,配置為hdfs://master:9000
1.5.2 配置hdfs-site.xmlhadoop.tmp.dir /software/apache/hadoop/hadoop-2.7.3/tmp A base for other temporary directories. io.file.buffer.size 131072 fs.default.name hdfs://master:9000 true The name of the default file system.
dfs.replication表示節點數目,配置集群1個namenode,3個datanode,設置備份數為4;
dfs.namenode.name.dir和dfs.datanode.data.dir分別配置為之前創建的NameNode和DataNode的目錄路徑
1.5.3 配置mapred-site.xmldfs.namenode.secondary.http-address master:9001 dfs.replication 3 true Default block replication. dfs.namenode.name.dir /software/apache/hadoop/hadoop-2.7.3/namenode true dfs.datanode.data.dir /software/apache/hadoop/hadoop-2.7.3/datanode true dfs.webhdfs.enabled true
在$HADOOP_HOME下使用cp命令創建mapred-site.xml
cd $HADOOP_HOME cp mapred-site.xml.template mapred-site.xml
配置mapred-site.xml,配置項mapred.job.tracker指向master節點;
在hadoop 2.x.x中,用戶無需配置mapred.job.tracker,因為JobTracker已經不存在,功能由組件MRAppMaster實現,因此需要用mapreduce.framework.name指定運行框架名稱,指定yarn
——《Hadoop技術內幕:深入解析YARN架構設計與實現原理》
1.5.4 配置yarn-site.xmlmapreduce.framework.name yarn mapreduce.jobhistory.address master:10020 mapreduce.jobhistory.address master:19888
1.5.5 安裝vim,ifconfig與pingyarn.nodemanager.aux-services mapreduce_shuffle yarn.nodemanager.aux-services.mapreduce.shuffle.class org.apache.hadoop.mapred.ShuffleHandler yarn.resourcemanager.address master:8032 yarn.resourcemanager.scheduler.address master:8030 yarn.resourcemanager.resource-tracker.address master:8031 yarn.resourcemanager.admin.address master:8033 yarn.resourcemanager.webapp.address master:8088
安裝ifconfig與ping命令所需軟件包
apt-get update apt-get install vim apt-get install net-tools # for ifconfig apt-get install inetutils-ping # for ping1.5.6 構建hadoop基礎鏡像
假設當前容器名為container,保存基礎鏡像為ubuntu:hadoop,后續hadoop集群容器都根據該鏡像創建啟動,無需重復配置;
sudo docker commit -m "hadoop installed" container ubuntu:hadoop /bin/bash
分別根據基礎鏡像ubuntu:hadoop創建mater容器和slave1~3容器,各自主機名與容器名一致;
創建master:docker run -ti -h master --name master ubuntu:hadoop /bin/bash
創建slave1:docker run -ti -h slave1 --name slave1 ubuntu:hadoop /bin/bash
創建slave2:docker run -ti -h slave2 --name slave2 ubuntu:hadoop /bin/bash
創建slave3:docker run -ti -h slave3 --name slave3 ubuntu:hadoop /bin/bash
在各容器的/etc/hosts中添加以下內容,各容器ip地址通過ifconfig查看:
master 172.17.0.2 slave1 172.17.0.3 slave2 172.17.0.4 slave3 172.17.0.5
注意:docker容器重啟后,hosts內容可能會失效,經驗不足暫時只能避免容器頻繁重啟,否則得手動再次配置hosts文件;
參考http://dockone.io/question/400
2.3 集群節點SSH配置 2.3.1 所有節點:安裝ssh1./etc/hosts, /etc/resolv.conf和/etc/hostname,容器中的這三個文件不存在于鏡像,而是存在于/var/lib/docker/containers/
,在啟動容器的時候,通過mount的形式將這些文件掛載到容器內部。因此,如果在容器中修改這些文件的話,修改部分不會存在于容器的top layer,而是直接寫入這三個物理文件中。
2.為什么重啟后修改內容不存在?原因是:每次Docker在啟動容器的時候,通過重新構建新的/etc/hosts文件,這又是為什么呢?原因是:容器重啟,IP地址為改變,hosts文件中原來的IP地址無效,因此理應修改hosts文件,否則會產生臟數據。?原因是:每次Docker在啟動容器的時候,通過重新構建新的/etc/hosts文件,這又是為什么呢?原因是:容器重啟,IP地址為改變,hosts文件中原來的IP地址無效,因此理應修改hosts文件,否則會產生臟數據。1./etc/hosts, /etc/resolv.conf和/etc/hostname,容器中的這三個文件不存在于鏡像,而是存在于/var/lib/docker/containers/,在啟動容器的時候,通過mount的形式將這些文件掛載到容器內部。因此,如果在容器中修改這些文件的話,修改部分不會存在于容器的top layer,而是直接寫入這三個物理文件中。
apt-get update apt-get install ssh apt-get install openssh-server2.3.2 所有節點:生成隨機密鑰
# 生成無密碼密鑰,生成密鑰位于~/.ssh下 ssh-keygen -t rsa -P ""2.3.3 master節點:生成證書文件authorized_keys
將生成的公鑰寫入authorized_keys中
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys2.3.4 所有節點:修改sshd_config文件
通過修改sshd_config文件,保證ssh可遠程登陸其他節點的root用戶
vim /etc/ssh/sshd_config # 將PermitRootLogin prohibit-password修改為PermitRootLogin yes # 重啟ssh服務 service ssh restart2.3.5 master節點:通過scp傳輸證書到slave節點
傳輸master節點上的authorized_keys到其他slave節點~/.ssh下,覆蓋同名文件;保證所有節點的證書一致,因此可以實現任意節點間可以通過ssh訪問;
cd ~/.ssh scp authorized_keys root@slave1:~/.ssh/ scp authorized_keys root@slave2:~/.ssh/ scp authorized_keys root@slave3:~/.ssh/2.3.6 slave節點:修改證書權限確保生效
chmod 600 ~/.ssh/authorized_keys注意
查看ssh服務是否開啟:ps -e | grep ssh
開啟ssh服務:service ssh start
重啟ssh服務:service ssh restart
完成2.3.1操作后,各個容器之間可通過ssh訪問;
2.4 master節點配置在master節點中,修改slaves文件配置slave節點
cd $HADOOP_CONFIG_HOME/ vim slaves
將其中內容覆蓋為:
slave1 slave2 slave32.5 啟動hadoop集群
進入master節點,
執行hdfs namenode -format,出現類似信息表示namenode格式化成功:
common.Storage: Storage directory /software/apache/hadoop/hadoop-2.7.3/namenode has been successfully formatted.
執行start_all.sh啟動集群:
root@master:/# start-all.sh This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh Starting namenodes on [master] The authenticity of host "master (172.17.0.2)" can"t be established. ECDSA key fingerprint is SHA256:OewrSOYpvfDE6ixf6Gw9U7I9URT2zDCCtDJ6tjuZz/4. Are you sure you want to continue connecting (yes/no)? yes master: Warning: Permanently added "master,172.17.0.2" (ECDSA) to the list of known hosts. master: starting namenode, logging to /software/apache/hadoop/hadoop-2.7.3/logs/hadoop-root-namenode-master.out slave3: starting datanode, logging to /software/apache/hadoop/hadoop-2.7.3/logs/hadoop-root-datanode-slave3.out slave2: starting datanode, logging to /software/apache/hadoop/hadoop-2.7.3/logs/hadoop-root-datanode-slave2.out slave1: starting datanode, logging to /software/apache/hadoop/hadoop-2.7.3/logs/hadoop-root-datanode-slave1.out Starting secondary namenodes [master] master: starting secondarynamenode, logging to /software/apache/hadoop/hadoop-2.7.3/logs/hadoop-root-secondarynamenode-master.out starting yarn daemons starting resourcemanager, logging to /software/apache/hadoop/hadoop-2.7.3/logs/yarn-root-resourcemanager-master.out slave3: starting nodemanager, logging to /software/apache/hadoop/hadoop-2.7.3/logs/yarn-root-nodemanager-slave3.out slave1: starting nodemanager, logging to /software/apache/hadoop/hadoop-2.7.3/logs/yarn-root-nodemanager-slave1.out slave2: starting nodemanager, logging to /software/apache/hadoop/hadoop-2.7.3/logs/yarn-root-nodemanager-slave2.out
分別在master,slave節點中執行jps,
master:
root@master:/# jps 2065 Jps 1446 NameNode 1801 ResourceManager 1641 SecondaryNameNode
slave1:
1107 NodeManager 1220 Jps 1000 DataNode
slave2:
241 DataNode 475 Jps 348 NodeManager
slave3:
500 Jps 388 NodeManager 281 DataNode3. 執行wordcount
在hdfs中創建輸入目錄/hadoopinput,并將輸入文件LICENSE.txt存儲在該目錄下:
root@master:/# hdfs dfs -mkdir -p /hadoopinput root@master:/# hdfs dfs -put LICENSE.txt /hadoopint
進入$HADOOP_HOME/share/hadoop/mapreduce,提交wordcount任務給集群,將計算結果保存在hdfs中的/hadoopoutput目錄下:
root@master:/# cd $HADOOP_HOME/share/hadoop/mapreduce root@master:/software/apache/hadoop/hadoop-2.7.3/share/hadoop/mapreduce# hadoop jar hadoop-mapreduce-examples-2.7.3.jar wordcount /hadoopinput /hadoopoutput 17/05/26 01:21:34 INFO client.RMProxy: Connecting to ResourceManager at master/172.17.0.2:8032 17/05/26 01:21:35 INFO input.FileInputFormat: Total input paths to process : 1 17/05/26 01:21:35 INFO mapreduce.JobSubmitter: number of splits:1 17/05/26 01:21:35 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1495722519742_0001 17/05/26 01:21:36 INFO impl.YarnClientImpl: Submitted application application_1495722519742_0001 17/05/26 01:21:36 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1495722519742_0001/ 17/05/26 01:21:36 INFO mapreduce.Job: Running job: job_1495722519742_0001 17/05/26 01:21:43 INFO mapreduce.Job: Job job_1495722519742_0001 running in uber mode : false 17/05/26 01:21:43 INFO mapreduce.Job: map 0% reduce 0% 17/05/26 01:21:48 INFO mapreduce.Job: map 100% reduce 0% 17/05/26 01:21:54 INFO mapreduce.Job: map 100% reduce 100% 17/05/26 01:21:55 INFO mapreduce.Job: Job job_1495722519742_0001 completed successfully 17/05/26 01:21:55 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=29366 FILE: Number of bytes written=295977 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=84961 HDFS: Number of bytes written=22002 HDFS: Number of read operations=6 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Launched reduce tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=2922 Total time spent by all reduces in occupied slots (ms)=3148 Total time spent by all map tasks (ms)=2922 Total time spent by all reduce tasks (ms)=3148 Total vcore-milliseconds taken by all map tasks=2922 Total vcore-milliseconds taken by all reduce tasks=3148 Total megabyte-milliseconds taken by all map tasks=2992128 Total megabyte-milliseconds taken by all reduce tasks=3223552 Map-Reduce Framework Map input records=1562 Map output records=12371 Map output bytes=132735 Map output materialized bytes=29366 Input split bytes=107 Combine input records=12371 Combine output records=1906 Reduce input groups=1906 Reduce shuffle bytes=29366 Reduce input records=1906 Reduce output records=1906 Spilled Records=3812 Shuffled Maps =1 Failed Shuffles=0 Merged Map outputs=1 GC time elapsed (ms)=78 CPU time spent (ms)=1620 Physical memory (bytes) snapshot=451264512 Virtual memory (bytes) snapshot=3915927552 Total committed heap usage (bytes)=348127232 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=84854 File Output Format Counters Bytes Written=22002
計算結果保存在/hadoopoutput/part-r-00000中,查看結果:
root@master:/# hdfs dfs -ls /hadoopoutput Found 2 items -rw-r--r-- 3 root supergroup 0 2017-05-26 01:21 /hadoopoutput/_SUCCESS -rw-r--r-- 3 root supergroup 22002 2017-05-26 01:21 /hadoopoutput/part-r-00000 root@master:/# hdfs dfs -cat /hadoopoutput/part-r-00000 ""AS 2 "AS 16 "COPYRIGHTS 1 "Contribution" 2 "Contributor" 2 "Derivative 1 "Legal 1 "License" 1 "License"); 1 "Licensed 1 "Licensor" 1 ...
至此,基于docker1.7.03單機上部署hadoop2.7.3集群圓滿成功!
參考[1] http://tashan10.com/yong-dockerda-jian-hadoopwei-fen-bu-shi-ji-qun/
[2] http://blog.csdn.net/xiaoxiangzi222/article/details/52757168
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。
轉載請注明本文地址:http://specialneedsforspecialkids.com/yun/26925.html
摘要:今天,阿里資深技術專家天羽為我們講述阿里數據庫的極致彈性之路。二容器化彈性,提升資源效率隨著單機服務器的能力提升,阿里數據庫在年就開始使用單機多實例的方案,通過和文件系統目錄端口的部署隔離,支持單機多實例,把單機資源利用起來。 showImg(https://segmentfault.com/img/remote/1460000017333275); 阿里妹導讀:數據庫從IOE(IBM...
摘要:今天,阿里資深技術專家天羽為我們講述阿里數據庫的極致彈性之路。二容器化彈性,提升資源效率隨著單機服務器的能力提升,阿里數據庫在年就開始使用單機多實例的方案,通過和文件系統目錄端口的部署隔離,支持單機多實例,把單機資源利用起來。 showImg(https://segmentfault.com/img/remote/1460000017333275); 阿里妹導讀:數據庫從IOE(IBM...
摘要:項目地址前言大數據技術棧思維導圖大數據常用軟件安裝指南一分布式文件存儲系統分布式計算框架集群資源管理器單機偽集群環境搭建集群環境搭建常用命令的使用基于搭建高可用集群二簡介及核心概念環境下的安裝部署和命令行的基本使用常用操作分區表和分桶表視圖 項目GitHub地址:https://github.com/heibaiying... 前 言 大數據技術棧思維導圖 大數據常用軟件安裝指...
閱讀 3344·2021-11-22 15:22
閱讀 2867·2021-10-12 10:12
閱讀 2162·2021-08-21 14:10
閱讀 3831·2021-08-19 11:13
閱讀 2850·2019-08-30 15:43
閱讀 3230·2019-08-29 16:52
閱讀 447·2019-08-29 16:41
閱讀 1438·2019-08-29 12:53