国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

深入理解以太坊虛擬機 (一) 中英對照

BLUE / 3178人閱讀

摘要:以太坊的工具鏈還非常新,深入理解可以幫助你和他人實現一些很棒的工具。到目前為止依舊不是很清楚,別擔心走讀字節碼并沒有想象中的那么困難。編譯器本可以通過得到相同的結果,顯然后者的字節碼要短一些。

原文: Diving Into The Ethereum VM
作者: Howard
譯者: 187J3X1 


Solidity offers many high-level language abstractions, but these features make it hard to understand what’s really going on when my program is running. Reading the Solidity documentation still left me confused over very basic things.

Solidity提供了許多高級語言的特性,但這些高級特性使得要想去理解底層程序是如何運行過程變得困難。即使讀了Solidity的官方文檔,我依然對一些基礎的內容感到困惑。

What are the differences between string, bytes32, byte[], bytes?

Which one do I use, when?

What’s happening when I cast a string to bytes? Can I cast to byte[]?

How much do they cost?

stringbyte32byte[],bytes這些類型到底有什么區別?

什么情景該選擇使用哪一個?

string類型轉換為bytes類型時會發生什么? 能轉換成 byte[]類型嗎?

使用它們各有多大的代價?

How are mappings stored by the EVM?

Why can’t I delete a mapping?

Can I have mappings of mappings? (Yes, but how does that work?)

Why is there storage mapping, but no memory mapping?

映射類型(mappings)在EVM中時被如何存儲的?

能刪除一個映射?

能創建映射的映射嗎?

為什么只有存儲空間的映射,沒有內存空間的映射?

How does a compiled contract look to the EVM?

How is a contract created?

What is a constructor, really?

What is the fallback function?

EVM眼中經過編譯的合約是什么樣子?

合約如何創建?

構造函數是什么?

fallback函數是什么?

I think it’s a good investment to learn how a high-level language like Solidity runs on the Ethereum VM (EVM). For couple of reasons.

Solidity is not the last word. Better EVM languages are coming. (Pretty please?)
The EVM is a database engine. To understand how smart contracts work in any EVM language, you have to understand how data is organized, stored, and manipulated.
Know-how to be a contributor. The Ethereum toolchain is still very early. Knowing the EVM well would help you make awesome tools for yourself and others.
Intellectual challenge. EVM gives you a good excuse to play at the intersection of cryptography, data structure, and programming language design.

我認為去學習Solidity這樣的高級語言在以太坊虛擬機(EVM)中的運行過程是項非常棒的投資。至少有以下這些好處:

Solidity并不是終點。更好的EVM語言已經在路上了。

EVM是一個數據庫引擎,要想理解智能合約是如何工作的,首先要理解合約數據是如何組織、存儲、操作的。

可以成為貢獻者。以太坊的工具鏈還非常新,深入理解EVM可以幫助你和他人實現一些很棒的工具。

可以提升思維。EVM能讓你深入研究密碼學、數據結構、程序設計。

譯注:Solidity是高級語言,定制的編譯器可以將這種高級語言轉化為EVM能理解的一串二進制編碼,所以只要能生成這種二進制碼,并不一定限定在Solidity。有點類似與JAVA利用JVM實現跨平臺。

In a series of articles, I’d like to deconstruct simple Solidity contracts in order to understand how it works as EVM bytecode.

An outline of what I hope to learn and write about:

The basics of EVM bytecode.

How different types (mappings, arrays) are represented.

What is going on when a new contract is created.

What is going on when a method is called.

How the ABI bridges different EVM languages.

My final goal is to be able to understand a compiled Solidity contract in its entirety. Let’s start by reading some basic EVM bytecode!

在接下來的一些列文章中,我會以一些簡單的Solidity編寫的合約為例展示其在EVM中是如何工作的。

以下是我希望學到的知識大綱:

EVM字節碼基礎.

不同數據結構的組織方式,比如映射和數組(mapping,arrays)

合約創建時發生了什么.

方法被調用時發生了什么.

ABI是如何橋接不同的EVM語言的.

我的最終目標是能夠完全理解智能合約的工作原理,讓我們從EVM字節碼開始吧

This table of EVM Instruction Set would be a helpful reference.

你可以隨時查看EVM支持的指令集以獲得幫助。

譯注:指令集對應于源碼 core/vm/opcodes.go

A Simple Contract

Our first contract has a constructor and a state variable:
第一個合約的例子包含一個構造函數和一個狀態變量

// c1.sol
pragma solidity ^0.4.11;

contract C {
    uint256 a;

    function C() {
      a = 1;
    }
}

Compile this contract with solc:
使用solc來編譯這個合約:

$ solc --bin --asm c1.sol

======= c1.sol:C =======
EVM assembly:
    /* "c1.sol":26:94  contract C {... */
  mstore(0x40, 0x60)
    /* "c1.sol":59:92  function C() {... */
  jumpi(tag_1, iszero(callvalue))
  0x0
  dup1
  revert
tag_1:
tag_2:
    /* "c1.sol":84:85  1 */
  0x1
    /* "c1.sol":80:81  a */
  0x0
    /* "c1.sol":80:85  a = 1 */
  dup2
  swap1
  sstore
  pop
    /* "c1.sol":59:92  function C() {... */
tag_3:
    /* "c1.sol":26:94  contract C {... */
tag_4:
  dataSize(sub_0)
  dup1
  dataOffset(sub_0)
  0x0
  codecopy
  0x0
  return
stop

sub_0: assembly {
        /* "c1.sol":26:94  contract C {... */
      mstore(0x40, 0x60)
    tag_1:
      0x0
      dup1
      revert

auxdata: 0xa165627a7a72305820af3193f6fd31031a0e0d2de1ad2c27352b1ce081b4f3c92b5650ca4dd542bb770029
}

Binary:
60606040523415600e57600080fd5b5b60016000819055505b5b60368060266000396000f30060606040525b600080fd00a165627a7a72305820af3193f6fd31031a0e0d2de1ad2c27352b1ce081b4f3c92b5650ca4dd542bb770029

The number 6060604052... is bytecode that the EVM actually runs.
最后生成的6060604052...便是EVM實際運行的字節碼

In Baby Steps

Half of the compiled assembly is boilerplate that’s similar across most Solidity programs. We’ll look at those later. For now, let’s examine the unique part of our contract, the humble storage variable assignment:

一步一步分析

上面編譯生成的匯編代碼有一半都是大部分Solidity程序固定的框架,所以我們只需要關注我們合約中獨特的部分,即對存儲變量賦值的那部分。

a = 1

This assignment is represented by the bytecode 6001600081905550. Let’s break it up into one instruction per line:
該賦值語句轉化成字節碼后是6001600081905550。將其按指令分行展示

60 01
60 00
81
90
55
50

The EVM is basically a loop that execute each instruction from top to bottom. Let’s annotate the assembly code (indented under the label tag_2) with the corresponding bytecode to better see how they are associated:

EVM從上倒下依次執行每條指令。讓我們將tag2以下代碼與其對應的助記符聯系起來看:

tag_2:
  // 60 01
  0x1
  // 60 00
  0x0
  // 81
  dup2
  // 90
  swap1
  // 55
  sstore
  // 50
  pop

Note that 0x1 in the assembly code is actually a shorthand for push(0x1). This instruction pushes the number 1 onto the stack.

It still hard to grok what’s going on just staring at it. Don’t worry though, it’s simple to simulate the EVM line by line.

注意: 0x1是push(0x1)的簡化形式,它將數字1壓棧。
到目前為止依舊不是很清楚,別擔心!走讀EVM字節碼并沒有想象中的那么困難。

Simulating The EVM

The EVM is a stack machine. Instructions might use values on the stack as arguments, and push values onto the stack as results. Let’s consider the operation add.

EVM是基于棧的機器,指令讀取棧上元素的值作為輸入,并將運算結果壓棧。以add指令為例:

Assume that there are two values on the stack:
假設現在棧上已經有了兩個元素如下:

[1 2]

When the EVM sees add, it adds the top 2 items together, and pushes the answer back onto the stack, resulting in:

當EVM運行到add指令時,它將棧頂兩個元素彈出,將其相加后的記過壓棧,運算之后的棧變成了:

[3]

In what follows, we’ll notate the stack with []:
下文都以[]表示EVM運行過程中棧的狀態

// The empty stack
// 空棧
stack: []
// Stack with three items. The top item is 3. The bottom item is 1.
//一個包含3個元素的棧,棧頂元素是3,棧底元素是1.
stack: [3 2 1]

And notate the contract storage with {}:
另外,使用{}表示EVM運行時存儲器的狀態:

// Nothing in storage.
// 空的存儲器
store: {}
// The value 0x1 is stored at the position 0x0.
//在0x0位置包含一個值為0x1的元素
store: { 0x0 => 0x1 }

譯注:在以太坊源碼中,數據結構Stack表示棧,Memory表示存儲器。

Let’s now look at some real bytecode. We’ll simulate the bytecode sequence 6001600081905550 as EVM would, and print out the machine state after each instruction:

下面我們來看真實的字節碼。我們會模擬EVM執行字節碼 6001600081905550并標識出每一步后機器的狀態

// 60 01: pushes 1 onto stack
// 60 01: 將 1 壓棧
0x1
  stack: [0x1]

// 60 00: pushes 0 onto stack
// 60 01: 將 0 壓棧
0x0
  stack: [0x0 0x1]

// 81: duplicate the second item on the stack
// 81: 將棧頂往下第2個元素復制一次放到棧頂
dup2
  stack: [0x1 0x0 0x1]

// 90: swap the top two items
// 90: 交換棧頂兩個元素
swap1
  stack: [0x0 0x1 0x1]

// 55: store the value 0x1 at position 0x0
// This instruction consumes the top 2 items
// 55:將 0x1 保存在 0x0
// 這條指令彈出棧頂前2個元素
sstore
  stack: [0x1]
  store: { 0x0 => 0x1 }

// 50: pop (throw away the top item)
// 50: 彈出棧頂元素
pop
  stack: []
  store: { 0x0 => 0x1 }

The end. The stack is empty, and there’s one item in storage.
最終,棧空了。存儲器中包含一個元素

What’s worth noting is that Solidity had decided to store the state variable uint256 a at the position 0x0. It"s perfectly possible for other languages to choose to store the state variable elsewhere.

值得注意的是Solidity已經會將uint256 a固定在0x0位置,在其他高級語言中,我們可以主動指定其存儲位置。

In pseudocode, what the EVM does for 6001600081905550 is essentially:
偽代碼表示6001600081905550就是

// a = 1
sstore(0x0, 0x1)

Looking carefully, you’d see that the dup2, swap1, pop are superfluous. The assembly code could be simpler:
仔細觀察,你會發現諸如dup2, swap1, pop這些指令都是多余的。匯編代碼像下面這樣就足夠了

0x1
0x0
sstore

You could try to simulate the above 3 instructions, and satisfy yourself that they indeed result in the same machine state:
模擬執行以上三條指令,你會發現和之前的那種方式相比,最后的結果是一樣的。

stack: []
store: { 0x0 => 0x1 }
Two Storage Variables 兩個存儲變量

Let’s add one extra storage variable of the same type:
在之前的例子的基礎上增加一個相同類型的變量

// c2.sol
pragma solidity ^0.4.11;
contract C { uint256 a; uint256 b; function C() { a = 1; b = 2; } }

Compile, focusing on tag_2:
編譯后,僅關注tag_2

$ solc --bin --asm c2.sol

// ... more stuff omitted
tag_2:
    /* "c2.sol":99:100  1 */
  0x1
    /* "c2.sol":95:96  a */
  0x0
    /* "c2.sol":95:100  a = 1 */
  dup2
  swap1
  sstore
  pop
    /* "c2.sol":112:113  2 */
  0x2
    /* "c2.sol":108:109  b */
  0x1
    /* "c2.sol":108:113  b = 2 */
  dup2
  swap1
  sstore
  pop

The assembly in pseudocode:
匯編的偽碼為:

// a = 1
sstore(0x0, 0x1)
// b = 2
sstore(0x1, 0x2)

What we learn here is that the two storage variables are positioned one after the other, with a in position 0x0 and b in position 0x1.
可以看到,兩個變量以此存儲在存儲器中a 0x0 b 0x1.

Storage Packing 存儲空間壓縮

Each slot storage can store 32 bytes. It’d be wasteful to use all 32 bytes if a variable only needs 16 bytes. Solidity optimizes for storage efficiency by packing two smaller data types into one storage slot if possible.

(存儲器由很多個存儲槽組成,)每個存儲槽可以存放32字節的數據。如果一個變量只需要16字節的存儲空間,但卻讓它占用一個完整的32字節空間,顯然很浪費的。因此Solidity編譯器會近可能地將兩個小的數據類型放到一個存儲槽中。

Let’s change a and b so they are only 16 bytes each:
將上面例子中的a b定義成16字節

pragma solidity ^0.4.11;

contract C {
    uint128 a;
    uint128 b;

function C() {
      a = 1;
      b = 2;
    }
}

Compile the contract:
編譯合約

$ solc --bin --asm c3.sol

The generated assembly is now more complex:

tag_2:
  // a = 1
 0x1
stack: [0x1]
  0x0
stack: [0x1,0x1]
  dup1
stack: [0x0,0x0,0x1]
  0x100
stack: [0x100,0x0,0x0,0x1]
  exp
stack: [0x1,0x0,0x1]
  dup2
stack: [0x0,0x1,0x0,0x1]
  sload
stack: [0x0,0x1,0x0,0x1]
  dup2
stack: [0x1,0x0,0x1,0x0,0x1]
  0xffffffffffffffffffffffffffffffff
stack: [0xff..ff,0x1,0x0,0x1,0x0,0x1]
  mul
stack: [0xff..ff,0x0,0x1,0x0,0x1]
  not
stack: [0x0,0x0,0x1,0x0,0x1]
  and
stack: [0x0,0x1,0x0,0x1]
  swap1
stack: [0x1,0x0,0x0,0x1]
  dup4
stack: [0x1,0x1,0x0,0x0,0x1]
  0xffffffffffffffffffffffffffffffff
stack: [0xff..ff,0x1,0x1,0x0,0x0,0x1]
  and
stack: [0x1,0x1,0x0,0x0,0x1]
  mul
stack: [0x1,0x0,0x0,0x1]
  or
stack: [0x1,0x0,0x1] 
 swap1
stack: [0x0,0x1,0x1]
  sstore
stack: [0x1]
storage:{0x0 => 0x1}
  pop
stack: [0x0]
------------------------------------------------------------------------
  0x2
stack: [0x2]
  0x0
stack: [0x0,0x2]
  0x10
stack: [0x10,0x0,0x2]
  0x100
stack: [0x100,0x10,0x0,0x2]
  exp
stack: [0x100..00,0x0,0x2]
  dup2
stack: [0x0,0x100..00,0x0,0x2]
  sload
stack: [0x1,0x100..00,0x0,0x2]
  dup2
stack: [0x100..00,0x1,0x100..00,0x0,0x2]
  0xffffffffffffffffffffffffffffffff
stack: [0xff..ff,0x100..00,0x1,0x100..00,0x0,0x2]
  mul
stack: [0xff..ff00..00,0x1,0x100..00,0x0,0x2]
  not
stack: [0x00..00ff..ff,0x1,0x100..00,0x0,0x2]
  and
stack: [0x1,0x100..00,0x0,0x2]
  swap1
stack: [0x100..00,0x1,0x0,0x2]
  dup4
stack: [0x2,0x100..00,0x1,0x0,0x2]
  0xffffffffffffffffffffffffffffffff
stack: [0xff..ff,2,0x100..00,1,0,2]
  and
stack: [0x2,0x100..00,0x1,0x0,0x2]
  mul
stack: [0x200..00,0x1,0x0,0x2]
  or
stack: [0x200..01,0x0,0x2]
  swap1
stack: [0x0,0x200..01,0x2]
  sstore
stack: [0x2]
{0x0 => 0x200..01}
  pop
stack: []

The above assembly code packs these two variables together in one storage position (0x0), like this:
上面的匯編碼最終讓兩個變量存儲在相同的位置(0x0)

[         b         ][         a         ]
[16 bytes / 128 bits][16 bytes / 128 bits]

譯注:我將每一步執行之后的棧的狀態也顯示了出來,盡管結果符合預期,但我也不明白為什么感覺繞了很大一圈。

The reason to pack is because the most expensive operations by far are storage usage:

sstore costs 20000 gas for first write to a new position.

sstore costs 5000 gas for subsequent writes to an existing position.

sload costs 500 gas.

Most instructions costs 3~10 gases.

By using the same storage position, Solidity pays 5000 for the second store variable instead of 20000, saving us 15000 in gas.

將變量壓縮存儲在一起的原因是在區塊鏈中存儲操作是到目前為止最昂貴的操作了:

sstore 在一個新的位置存儲要花費20000 gas。

sstore 在一個舊的位置存儲要花費5000 gas。

sload 從一個位置讀取花費500 gas。

大多數指令花費 3~10 gas

譯注:存儲很貴!存儲很貴!存儲很貴。每條指令的花費在 corevmjumptable.go中指令表的gasCost函數獲取

More Optimization 更多的優化

Instead of storing a and b with two separate sstore instructions, it should be possible to pack the two 128 bits numbers together in memory, then store them using just one sstore, saving an additional 5000 gas.

You can ask Solidity to make this optimization by turning on the optimize flag:
上面的例子中,為了存儲ab兩個變量,我們使用了兩次 sstore 指令。其實完全可以先將這兩個128比特變量在內存中就打包成一個變量,然后調用一次 sstore 指令,這樣足足可以省下5000 gas。

$ solc --bin --asm --optimize c3.sol

Which produces assembly code that uses just one sload and one sstore:
(顯式地使用--optimize選項)生成的匯編碼只使用了一次sload sstore

tag_2:
    /* "c3.sol":95:96  a */
  0x0
    /* "c3.sol":95:100  a = 1 */
  dup1
  sload
    /* "c3.sol":108:113  b = 2 */
  0x200000000000000000000000000000000
  not(sub(exp(0x2, 0x80), 0x1))
    /* "c3.sol":95:100  a = 1 */
  swap1
  swap2
  and
    /* "c3.sol":99:100  1 */
  0x1
    /* "c3.sol":95:100  a = 1 */
  or
  sub(exp(0x2, 0x80), 0x1)
    /* "c3.sol":108:113  b = 2 */
  and
  or
  swap1
  sstore

The bytecode is:
最終生成的字節碼為

600080547002000000000000000000000000000000006001608060020a03199091166001176001608060020a0316179055

And formatting the bytecode to one instruction per line:
將字節碼按指令逐條顯示

譯注:同樣,我將其每一步的棧的狀態顯示出來

// push 0x0
60 00
stack: [0x0]
// dup1
80
stack: [0x0,0x0]
// sload
54
stack: [0x0,0x0]
// push17 push the the next 17 bytes as a 32 bytes number
70 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
stack: [0x200..00,0x0,0x0]

/* not(sub(exp(0x2, 0x80), 0x1)) */
// push 0x1
60 01
stack: [0x1,0x200000000000000000000000000000000,0x0,0x0]
// push 0x80 (32)
60 80
stack: [0x80,0x1,0x200000000000000000000000000000000,0x0,0x0]
// push 0x02 (2)
60 02
stack: [0x02,0x80,0x1,0x200000000000000000000000000000000,0x0,0x0]
// exp
0a
stack: [0x100000000000000000000000000000000,0x1,0x200000000000000000000000000000000,0x0,0x0]
// sub
03
stack: [0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,0x200000000000000000000000000000000,0x0,0x0]
// not
19
stack: [0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000,0x200000000000000000000000000000000,0x0,0x0]
// swap1
90
stack: [0x200000000000000000000000000000000,0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000,0x0,0x0]
// swap2
91
stack: [0x0,0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000,0x200000000000000000000000000000000,0x0]
// and
16
stack: [0x0,0x200000000000000000000000000000000,0x0]
// push 0x1
60 01
stack: [0x1, 0x0,0x200000000000000000000000000000000,0x0]
// or
17
stack: [0x1,0x200000000000000000000000000000000,0x0]

/* sub(exp(0x2, 0x80), 0x1) */
// push 0x1
60 01
stack: [0x1,0x1,0x200000000000000000000000000000000,0x0]
// push 0x80
60 80
stack: [0x80,0x1,0x1,0x200000000000000000000000000000000,0x0]
// push 0x02
60 02
stack: [0x2,0x80,0x1,0x1,0x200000000000000000000000000000000,0x0]
// exp
0a
stack: [0x100000000000000000000000000000000,0x1,0x1,0x200000000000000000000000000000000,0x0]
// sub
03
stack: [0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,0x1,0x200000000000000000000000000000000,0x0]
// and
16
stack: [0x1,0x200000000000000000000000000000000,0x0]
// or
17
stack: [0x200000000000000000000000000000001,0x0]
// swap1
90
stack: [0x0,0x200000000000000000000000000000001]
// sstore
55
stack: []
storeage:{0x0 => 0x200..01}

There are four magic values used in the assembly code:
上面的匯編代碼中出現了4個幻數(常數)

0x1 (16 bytes), using lower 16 bytes

0x1 (16 字節), 存放在低16字節

// Represented as 0x01 in bytecode
16:32 0x00000000000000000000000000000000
00:16 0x00000000000000000000000000000001

0x2 (16 bytes), using higher 16bytes

0x2 (16 字節), 存放在高16字節

// Represented as 0x200000000000000000000000000000000 in bytecode
16:32 0x00000000000000000000000000000002
00:16 0x00000000000000000000000000000000

not(sub(exp(0x2, 0x80), 0x1))

// Bitmask for the upper 16 bytes
16:32 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
00:16 0x00000000000000000000000000000000

sub(exp(0x2, 0x80), 0x1)

// Bitmask for the lower 16 bytes
16:32 0x00000000000000000000000000000000 
00:16 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

The code does some bits-shuffling with these values to arrive at the desired result:
最終通過位運算組合成最終的結果

16:32 0x00000000000000000000000000000002 
00:16 0x00000000000000000000000000000001

Finally, this 32bytes value is stored at position 0x0.
最后再把32字節的結果存儲在位置0x0

Gas Usage Gas 使用量
600080547002000000000000000000000000000000006001608060020a03199091166001176001608060020a0316179055

Notice that 0x200000000000000000000000000000000 is embedded in the bytecode. But the compiler could’ve also chosen to calculate the value with the instructions exp(0x2, 0x81), which results in shorter bytecode sequence.
注意,在前面的例子中,我們將0x200000000000000000000000000000000 直接嵌入在了最終的字節碼中。編譯器本可以通過exp(0x2, 0x81)得到相同的結果,顯然后者的字節碼要短一些

But it turns out that 0x200000000000000000000000000000000 is a cheaper than exp(0x2, 0x81). Let"s look at the gas fees involved:

4 gas paid for every zero byte of data or code for a transaction.

68 gas for every non-zero byte of data or code for a transaction.

但實際上,用0x200000000000000000000000000000000 的方式更節省gas,我們可以計算下

字節碼中的每個值為0的字節花費是 4 gas.

字節碼中的每個值為非0的字節花費是 68 gas.

Let’s compare how much either representation costs in gas.

The bytecode 0x200000000000000000000000000000000. It has many zeroes, which are cheap.

于是,使用 0x200000000000000000000000000000000的方式,得益于它包含大量的0,于是實際上它更便宜。

(1 68) + (16 4) = 196.

The bytecode 608160020a. Shorter, but no zeroes.

相比之下,608160020a更短,但由于沒有0,實際會消耗更多的gas

5 * 68 = 340.

The longer sequence with more zeroes is actually cheaper!
結論就是:擁有更多的0的長字節碼序列更加便宜

Summary

An EVM compiler doesn’t exactly optimize for bytecode size or speed or memory efficiency. Instead, it optimizes for gas usage, which is an layer of indirection that incentivizes the sort of calculation that the Ethereum blockchain can do efficiently.

We’ve seen some quirky aspects of the EVM:

EVM is a 256bit machine. It is most natural to manipulate data in chunks of 32 bytes.

Persistent storage is quite expensive.

The Solidity compiler makes interesting choices in order to minimize gas usage.

Gas costs are set somewhat arbitrarily, and could well change in the future. As costs change, compilers would make different choices.

總結

EVM編譯器并不會為了執行速度和內存效率優化代碼,取而代之的是,它會將代碼優化地使用更少的gas。

我們從之前的例子可以看出EVM的一些特性

EVM 是256比特位寬的機器,可以天然處理32字節寬度的數據

存儲是非常昂貴的操作

Solidity編譯器盡可能地優化代碼gas的使用量

Gas的計算方式看上去有些武斷,也許在以后計算方式會改變。如果指令的花費價格發生變化,編譯器也會相應改變生成的代碼。

*

文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。

轉載請注明本文地址:http://specialneedsforspecialkids.com/yun/24407.html

相關文章

  • 以太是什么 - 以太開發入門指南

    摘要:以太坊是什么以太坊是一個建立在區塊鏈技術之上,去中心化應用平臺。運行環境以太坊虛擬機是以太坊中智能合約的運行環境。是由以太坊客戶端提供的是典型的開發以太坊時使用的客戶端,基于語言開發。 本文首發于深入淺出區塊鏈社區原文鏈接:以太坊是什么 - 以太坊開發入門指南原文已更新,請讀者前往原文閱讀 很多同學已經躍躍欲試投入到區塊鏈開發隊伍當中來,可是又感覺無從下手,本文將基于以太坊平臺,以通俗...

    tomlingtm 評論0 收藏0
  • 以太智能合約開發第二篇:理解以太相關概念

    摘要:原文發表于以太坊智能合約開發第二篇理解以太坊相關概念很多人都說比特幣是區塊鏈,以太坊是區塊鏈。它是以太坊智能合約的運行環境。是由以太坊節點提供。以太坊社區把基于智能合約的應用稱為去中心化的應用。 原文發表于:以太坊智能合約開發第二篇:理解以太坊相關概念 很多人都說比特幣是區塊鏈1.0,以太坊是區塊鏈2.0。在以太坊平臺上,可以開發各種各樣的去中心化應用,這些應用構成了以太坊的整個生態...

    yibinnn 評論0 收藏0
  • SegmentFault 技術周刊 Vol.41 - 深入學習區塊鏈

    摘要:和比特幣協議有所不同的是,以太坊的設計十分靈活,極具適應性。超級賬本區塊鏈的商業應用超級賬本超級賬本是基金會下的眾多項目中的一個。證書頒發機構負責簽發撤 showImg(https://segmentfault.com/img/bV2ge9?w=900&h=385); 從比特幣開始 一個故事告訴你比特幣的原理及運作機制 這篇文章的定位會比較科普,盡量用類比的方法將比特幣的基本原理講出來...

    qianfeng 評論0 收藏0
  • 開源區塊鏈Tendermint開發詳解

    摘要:課程概述本課程適合希望開發自己的專有區塊鏈的語言工程師,課程內容如下第一章課程簡介簡單介紹的定位特點以及對于開發者而言與以太坊的區別。課程地址區塊鏈開發詳解 簡介 tendermint是一個開源的完整的區塊鏈實現,可以用于公鏈或聯盟鏈,其官方定位 是面向開發者的區塊鏈共識引擎: showImg(https://segmentfault.com/img/remote/1460000016...

    wenshi11019 評論0 收藏0
  • 區塊鏈開發中使用的最流行的編程語言

    摘要:我們目前正處于一個新興的區塊鏈開發行業中。,一種在以太坊開發人員中流行的新的簡單編程語言,因為它是用于開發以太坊智能合約的語言。它是全球至少萬開發人員使用的世界上最流行的編程語言之一。以太坊,主要是針對工程師使用進行區塊鏈以太坊開發的詳解。 我們目前正處于一個新興的區塊鏈開發行業中。區塊鏈技術處于初期階段,然而這種顛覆性技術已經成功地風靡全球,并且最近經歷了一場與眾不同的繁榮。由于許多...

    2shou 評論0 收藏0

發表評論

0條評論

最新活動
閱讀需要支付1元查看
<