摘要:大家好,我是辣條。爬蟲實戰逆向登錄解析。當前可以看出代碼為加密,這里辣條選擇直接補環境,先把加密段代碼端進行添加,加密的公秘鑰需要重其他它接口獲取。面試題庫歷年經典,熱乎的大廠面試真題,持續更新中,添加獲取。
大家好,我是辣條。
今天帶來爬蟲實戰的第30篇文章。在挑選游戲的過程中感受學習,讓你突飛猛進。python爬蟲實戰:steam逆向RSA登錄解析。
?
網址:steam
開發工具:pycharm
開發環境:python3.7, Windows10 使用工具包:requests
訪問登錄頁面重登錄頁面獲取登錄接口, 先輸入錯誤的賬戶密碼去測試登錄接口。
獲取到登錄的接口地址,請求方法是post請求,找到需要傳遞的參數,可以看到密碼數據是加密的第一個數據是時間戳密碼加密字段應該用的base64,rsatimestamp字段目前還不清楚是什么,其他的都是固定數據。
找到password字段的加密位置,這里我們直接進行搜索,找加密位置,可以通過名字來大致判斷加密文件。
在文件進行搜索,查看數據值是否存在。
當前可以看出代碼為rsa加密,這里辣條選擇直接補js環境,先把加密段代碼端進行添加,rsa加密的公秘鑰需要重其他它接口獲取。
加密的秘鑰以及其他來自這個頁面,需要提取發送請求獲取到,要注意cookie需要保持一致,開始補js環境。
我們不需要賬號信息的獲取,可以直接注釋掉,打印數據,嘗試運行,哪里報錯補哪里。
少了rsa功能。
當前文件都拿過來,后面的方法也一樣的直接拿過來就行。
// Copyright (c) 2005 Tom Wu// All Rights Reserved.// See "LICENSE" for details.?/* * Copyright (c) 2003-2005 Tom Wu * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. * * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * In addition, the following condition applies: * * All redistributions must retain an intact copy of this copyright notice * and disclaimer. */?// Basic JavaScript BN library - subset useful for RSA encryption.?// Bits per digitvar dbits;?// JavaScript engine analysisvar canary = 0xdeadbeefcafe;var j_lm = ((canary&0xffffff)==0xefcafe);?// (public) Constructorfunction BigInteger(a,b,c) { if(a != null) if("number" == typeof a) this.fromNumber(a,b,c); else if(b == null && "string" != typeof a) this.fromString(a,256); else this.fromString(a,b);}?// return new, unset BigIntegerfunction nbi() { return new BigInteger(null); }?// am: Compute w_j += (x*this_i), propagate carries,// c is initial carry, returns final carry.// c < 3*dvalue, x < 2*dvalue, this_i < dvalue// We need to select the fastest one that works in this environment.?// am1: use a single mult and divide to get the high bits,// max digit bits should be 26 because// max internal value = 2*dvalue^2-2*dvalue (< 2^53)function am1(i,x,w,j,c,n) { while(--n >= 0) { var v = x*this[i++]+w[j]+c; c = Math.floor(v/0x4000000); w[j++] = v&0x3ffffff; } return c;}// am2 avoids a big mult-and-extract completely.// Max digit bits should be <= 30 because we do bitwise ops// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)function am2(i,x,w,j,c,n) { var xl = x&0x7fff, xh = x>>15; while(--n >= 0) { var l = this[i]&0x7fff; var h = this[i++]>>15; var m = xh*l+h*xl; l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); w[j++] = l&0x3fffffff; } return c;}// Alternately, set max digit bits to 28 since some// browsers slow down when dealing with 32-bit numbers.function am3(i,x,w,j,c,n) { var xl = x&0x3fff, xh = x>>14; while(--n >= 0) { var l = this[i]&0x3fff; var h = this[i++]>>14; var m = xh*l+h*xl; l = xl*l+((m&0x3fff)<<14)+w[j]+c; c = (l>>28)+(m>>14)+xh*h; w[j++] = l&0xfffffff; } return c;}if(j_lm) { BigInteger.prototype.am = am2; dbits = 30;}else if(j_lm) { BigInteger.prototype.am = am1; dbits = 26;}else { // Mozilla/Netscape seems to prefer am3 BigInteger.prototype.am = am3; dbits = 28;}?BigInteger.prototype.DB = dbits;BigInteger.prototype.DM = ((1<= 0; --i) r[i] = this[i]; r.t = this.t; r.s = this.s;}?// (protected) set from integer value x, -DV <= x < DVfunction bnpFromInt(x) { this.t = 1; this.s = (x<0)?-1:0; if(x > 0) this[0] = x; else if(x < -1) this[0] = x+DV; else this.t = 0;}?// return bigint initialized to valuefunction nbv(i) { var r = nbi(); r.fromInt(i); return r; }?// (protected) set from string and radixfunction bnpFromString(s,b) { var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 256) k = 8; // byte array else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else { this.fromRadix(s,b); return; } this.t = 0; this.s = 0; var i = s.length, mi = false, sh = 0; while(--i >= 0) { var x = (k==8)?s[i]&0xff:intAt(s,i); if(x < 0) { if(s.charAt(i) == "-") mi = true; continue; } mi = false; if(sh == 0) this[this.t++] = x; else if(sh+k > this.DB) { this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<>(this.DB-sh)); } else this[this.t-1] |= x<= this.DB) sh -= this.DB; } if(k == 8 && (s[0]&0x80) != 0) { this.s = -1; if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)< 0 && this[this.t-1] == c) --this.t;}?// (public) return string representation in given radixfunction bnToString(b) { if(this.s < 0) return "-"+this.negate().toString(b); var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else return this.toRadix(b); var km = (1< 0) { if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } while(i >= 0) { if(p < k) { d = (this[i]&((1<>(p+=this.DB-k); } else { d = (this[i]>>(p-=k))&km; if(p <= 0) { p += this.DB; --i; } } if(d > 0) m = true; if(m) r += int2char(d); } } return m?r:"0";}?// (public) -thisfunction bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }?// (public) |this|function bnAbs() { return (this.s<0)?this.negate():this; }?// (public) return + if this > a, - if this < a, 0 if equalfunction bnCompareTo(a) { var r = this.s-a.s; if(r != 0) return r; var i = this.t; r = i-a.t; if(r != 0) return r; while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; return 0;}?// returns bit length of the integer xfunction nbits(x) { var r = 1, t; if((t=x>>>16) != 0) { x = t; r += 16; } if((t=x>>8) != 0) { x = t; r += 8; } if((t=x>>4) != 0) { x = t; r += 4; } if((t=x>>2) != 0) { x = t; r += 2; } if((t=x>>1) != 0) { x = t; r += 1; } return r;}?// (public) return the number of bits in "this"function bnBitLength() { if(this.t <= 0) return 0; return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));}?// (protected) r = this << n*DBfunction bnpDLShiftTo(n,r) { var i; for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; for(i = n-1; i >= 0; --i) r[i] = 0; r.t = this.t+n; r.s = this.s;}?// (protected) r = this >> n*DBfunction bnpDRShiftTo(n,r) { for(var i = n; i < this.t; ++i) r[i-n] = this[i]; r.t = Math.max(this.t-n,0); r.s = this.s;}?// (protected) r = this << nfunction bnpLShiftTo(n,r) { var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1<= 0; --i) { r[i+ds+1] = (this[i]>>cbs)|c; c = (this[i]&bm)<= 0; --i) r[i] = 0; r[ds] = c; r.t = this.t+ds+1; r.s = this.s; r.clamp();}?// (protected) r = this >> nfunction bnpRShiftTo(n,r) { r.s = this.s; var ds = Math.floor(n/this.DB); if(ds >= this.t) { r.t = 0; return; } var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1<>bs; for(var i = ds+1; i < this.t; ++i) { r[i-ds-1] |= (this[i]&bm)<>bs; } if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<>= this.DB; } if(a.t < this.t) { c -= a.s; while(i < this.t) { c += this[i]; r[i++] = c&this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while(i < a.t) { c -= a[i]; r[i++] = c&this.DM; c >>= this.DB; } c -= a.s; } r.s = (c<0)?-1:0; if(c < -1) r[i++] = this.DV+c; else if(c > 0) r[i++] = c; r.t = i; r.clamp();}?// (protected) r = this * a, r != this,a (HAC 14.12)// "this" should be the larger one if appropriate.function bnpMultiplyTo(a,r) { var x = this.abs(), y = a.abs(); var i = x.t; r.t = i+y.t; while(--i >= 0) r[i] = 0; for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); r.s = 0; r.clamp(); if(this.s != a.s) BigInteger.ZERO.subTo(r,r);}?// (protected) r = this^2, r != this (HAC 14.16)function bnpSquareTo(r) { var x = this.abs(); var i = r.t = 2*x.t; while(--i >= 0) r[i] = 0; for(i = 0; i < x.t-1; ++i) { var c = x.am(i,x[i],r,2*i,0,1); if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { r[i+x.t] -= x.DV; r[i+x.t+1] = 1; } } if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); r.s = 0; r.clamp();}?// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)// r != q, this != m. q or r may be null.function bnpDivRemTo(m,q,r) { var pm = m.abs(); if(pm.t <= 0) return; var pt = this.abs(); if(pt.t < pm.t) { if(q != null) q.fromInt(0); if(r != null) this.copyTo(r); return; } if(r == null) r = nbi(); var y = nbi(), ts = this.s, ms = m.s; var nsh = this.DB-nbits(pm[pm.t-1]); ? // normalize modulus if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); } var ys = y.t; var y0 = y[ys-1]; if(y0 == 0) return; var yt = y0*(1<1)?y[ys-2]>>this.F2:0); var d1 = this.FV/yt, d2 = (1<= 0) { r[r.t++] = 1; r.subTo(t,r); } BigInteger.ONE.dlShiftTo(ys,t); t.subTo(y,y); ? // "negative" y so we can replace sub with am later while(y.t < ys) y[y.t++] = 0; while(--j >= 0) { // Estimate quotient digit var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { ? // Try it out y.dlShiftTo(j,t); r.subTo(t,r); while(r[i] < --qd) r.subTo(t,r); } } if(q != null) { r.drShiftTo(ys,q); if(ts != ms) BigInteger.ZERO.subTo(q,q); } r.t = ys; r.clamp(); if(nsh > 0) r.rShiftTo(nsh,r); ? // Denormalize remainder if(ts < 0) BigInteger.ZERO.subTo(r,r);}?// (public) this mod afunction bnMod(a) { var r = nbi(); this.abs().divRemTo(a,null,r); if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); return r;}?// Modular reduction using "classic" algorithmfunction Classic(m) { this.m = m; }function cConvert(x) { if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); else return x;}function cRevert(x) { return x; }function cReduce(x) { x.divRemTo(this.m,null,x); }function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }?Classic.prototype.convert = cConvert;Classic.prototype.revert = cRevert;Classic.prototype.reduce = cReduce;Classic.prototype.mulTo = cMulTo;Classic.prototype.sqrTo = cSqrTo;?// (protected) return "-1/this % 2^DB"; useful for Mont. reduction// justification:// ? ? ? ? xy == 1 (mod m)// ? ? ? ? xy = 1+km// ? xy(2-xy) = (1+km)(1-km)// x[y(2-xy)] = 1-k^2m^2// x[y(2-xy)] == 1 (mod m^2)// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.// JS multiply "overflows" differently from C/C++, so care is needed here.function bnpInvDigit() { if(this.t < 1) return 0; var x = this[0]; if((x&1) == 0) return 0; var y = x&3; ? ? ? // y == 1/x mod 2^2 y = (y*(2-(x&0xf)*y))&0xf; ? // y == 1/x mod 2^4 y = (y*(2-(x&0xff)*y))&0xff; ? // y == 1/x mod 2^8 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; ? // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y*(2-x*y%this.DV))%this.DV; ? ? ? // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y>0)?this.DV-y:-y;}?// Montgomery reductionfunction Montgomery(m) { this.m = m; this.mp = m.invDigit(); this.mpl = this.mp&0x7fff; this.mph = this.mp>>15; this.um = (1<<(m.DB-15))-1; this.mt2 = 2*m.t;}?// xR mod mfunction montConvert(x) { var r = nbi(); x.abs().dlShiftTo(this.m.t,r); r.divRemTo(this.m,null,r); if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); return r;}?// x/R mod mfunction montRevert(x) { var r = nbi(); x.copyTo(r); this.reduce(r); return r;}?// x = x/R mod m (HAC 14.32)function montReduce(x) { while(x.t <= this.mt2) ? // pad x so am has enough room later x[x.t++] = 0; for(var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i]&0x7fff; var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; // use am to combine the multiply-shift-add into one call j = i+this.m.t; x[j] += this.m.am(0,u0,x,i,0,this.m.t); // propagate carry while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } } x.clamp(); x.drShiftTo(this.m.t,x); if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);}?// r = "x^2/R mod m"; x != rfunction montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }?// r = "xy/R mod m"; x,y != rfunction montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }?Montgomery.prototype.convert = montConvert;Montgomery.prototype.revert = montRevert;Montgomery.prototype.reduce = montReduce;Montgomery.prototype.mulTo = montMulTo;Montgomery.prototype.sqrTo = montSqrTo;?// (protected) true iff this is evenfunction bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }?// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)function bnpExp(e,z) { if(e > 0xffffffff || e < 1) return BigInteger.ONE; var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; g.copyTo(r); while(--i >= 0) { z.sqrTo(r,r2); if((e&(1< 0) z.mulTo(r2,g,r); else { var t = r; r = r2; r2 = t; } } return z.revert(r);}?// (public) this^e % m, 0 <= e < 2^32function bnModPowInt(e,m) { var z; if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); return this.exp(e,z);}?// protectedBigInteger.prototype.copyTo = bnpCopyTo;BigInteger.prototype.fromInt = bnpFromInt;BigInteger.prototype.fromString = bnpFromString;BigInteger.prototype.clamp = bnpClamp;BigInteger.prototype.dlShiftTo = bnpDLShiftTo;BigInteger.prototype.drShiftTo = bnpDRShiftTo;BigInteger.prototype.lShiftTo = bnpLShiftTo;BigInteger.prototype.rShiftTo = bnpRShiftTo;BigInteger.prototype.subTo = bnpSubTo;BigInteger.prototype.multiplyTo = bnpMultiplyTo;BigInteger.prototype.squareTo = bnpSquareTo;BigInteger.prototype.divRemTo = bnpDivRemTo;BigInteger.prototype.invDigit = bnpInvDigit;BigInteger.prototype.isEven = bnpIsEven;BigInteger.prototype.exp = bnpExp;?// publicBigInteger.prototype.toString = bnToString;BigInteger.prototype.negate = bnNegate;BigInteger.prototype.abs = bnAbs;BigInteger.prototype.compareTo = bnCompareTo;BigInteger.prototype.bitLength = bnBitLength;BigInteger.prototype.mod = bnMod;BigInteger.prototype.modPowInt = bnModPowInt;?// "constants"BigInteger.ZERO = nbv(0);BigInteger.ONE = nbv(1);??// Copyright (c) 2005 Tom Wu// All Rights Reserved.// See "LICENSE" for details.?// Extended JavaScript BN functions, required for RSA private ops.?// (public)function bnClone() { var r = nbi(); this.copyTo(r); return r; }?// (public) return value as integerfunction bnIntValue() { if(this.s < 0) { if(this.t == 1) return this[0]-this.DV; else if(this.t == 0) return -1; } else if(this.t == 1) return this[0]; else if(this.t == 0) return 0; // assumes 16 < DB < 32 return ((this[1]&((1<<(32-this.DB))-1))<>24; }?// (public) return value as short (assumes DB>=16)function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }?// (protected) return x s.t. r^x < DVfunction bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }?// (public) 0 if this == 0, 1 if this > 0function bnSigNum() { if(this.s < 0) return -1; else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; else return 1;}?// (protected) convert to radix stringfunction bnpToRadix(b) { if(b == null) b = 10; if(this.signum() == 0 || b < 2 || b > 36) return "0"; var cs = this.chunkSize(b); var a = Math.pow(b,cs); var d = nbv(a), y = nbi(), z = nbi(), r = ""; this.divRemTo(d,y,z); while(y.signum() > 0) { r = (a+z.intValue()).toString(b).substr(1) + r; y.divRemTo(d,y,z); } return z.intValue().toString(b) + r;}?// (protected) convert from radix stringfunction bnpFromRadix(s,b) { this.fromInt(0); if(b == null) b = 10; var cs = this.chunkSize(b); var d = Math.pow(b,cs), mi = false, j = 0, w = 0; for(var i = 0; i < s.length; ++i) { var x = intAt(s,i); if(x < 0) { if(s.charAt(i) == "-" && this.signum() == 0) mi = true; continue; } w = b*w+x; if(++j >= cs) { this.dMultiply(d); this.dAddOffset(w,0); j = 0; w = 0; } } if(j > 0) { this.dMultiply(Math.pow(b,j)); this.dAddOffset(w,0); } if(mi) BigInteger.ZERO.subTo(this,this);}?// (protected) alternate constructorfunction bnpFromNumber(a,b,c) { if("number" == typeof b) { // new BigInteger(int,int,RNG) if(a < 2) this.fromInt(1); else { this.fromNumber(a,c); if(!this.testBit(a-1)) ? // force MSB set this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); if(this.isEven()) this.dAddOffset(1,0); // force odd while(!this.isProbablePrime(b)) { this.dAddOffset(2,0); if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); } } } else { // new BigInteger(int,RNG) var x = new Array(), t = a&7; x.length = (a>>3)+1; b.nextBytes(x); if(t > 0) x[0] &= ((1< 0) { if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p) r[k++] = d|(this.s<<(this.DB-p)); while(i >= 0) { if(p < 8) { d = (this[i]&((1<>(p+=this.DB-8); } else { d = (this[i]>>(p-=8))&0xff; if(p <= 0) { p += this.DB; --i; } } if((d&0x80) != 0) d |= -256; if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; if(k > 0 || d != this.s) r[k++] = d; } } return r;}?function bnEquals(a) { return(this.compareTo(a)==0); }function bnMin(a) { return(this.compareTo(a)<0)?this:a; }function bnMax(a) { return(this.compareTo(a)>0)?this:a; }?// (protected) r = this op a (bitwise)function bnpBitwiseTo(a,op,r) { var i, f, m = Math.min(a.t,this.t); for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); if(a.t < this.t) { f = a.s&this.DM; for(i = m; i < this.t; ++i) r[i] = op(this[i],f); r.t = this.t; } else { f = this.s&this.DM; for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); r.t = a.t; } r.s = op(this.s,a.s); r.clamp();}?// (public) this & afunction op_and(x,y) { return x&y; }function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }?// (public) this | afunction op_or(x,y) { return x|y; }function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }?// (public) this ^ afunction op_xor(x,y) { return x^y; }function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }?// (public) this & ~afunction op_andnot(x,y) { return x&~y; }function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }?// (public) ~thisfunction bnNot() { var r = nbi(); for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i]; r.t = this.t; r.s = ~this.s; return r;}?// (public) this << nfunction bnShiftLeft(n) { var r = nbi(); if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); return r;}?// (public) this >> nfunction bnShiftRight(n) { var r = nbi(); if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); return r;}?// return index of lowest 1-bit in x, x < 2^31function lbit(x) { if(x == 0) return -1; var r = 0; if((x&0xffff) == 0) { x >>= 16; r += 16; } if((x&0xff) == 0) { x >>= 8; r += 8; } if((x&0xf) == 0) { x >>= 4; r += 4; } if((x&3) == 0) { x >>= 2; r += 2; } if((x&1) == 0) ++r; return r;}?// (public) returns index of lowest 1-bit (or -1 if none)function bnGetLowestSetBit() { for(var i = 0; i < this.t; ++i) if(this[i] != 0) return i*this.DB+lbit(this[i]); if(this.s < 0) return this.t*this.DB; return -1;}?// return number of 1 bits in xfunction cbit(x) { var r = 0; while(x != 0) { x &= x-1; ++r; } return r;}?// (public) return number of set bitsfunction bnBitCount() { var r = 0, x = this.s&this.DM; for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); return r;}?// (public) true iff nth bit is setfunction bnTestBit(n) { var j = Math.floor(n/this.DB); if(j >= this.t) return(this.s!=0); return((this[j]&(1<<(n%this.DB)))!=0);}?// (protected) this op (1<>= this.DB; } if(a.t < this.t) { c += a.s; while(i < this.t) { c += this[i]; r[i++] = c&this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while(i < a.t) { c += a[i]; r[i++] = c&this.DM; c >>= this.DB; } c += a.s; } r.s = (c<0)?-1:0; if(c > 0) r[i++] = c; else if(c < -1) r[i++] = this.DV+c; r.t = i; r.clamp();}?// (public) this + afunction bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }?// (public) this - afunction bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }?// (public) this * afunction bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }?// (public) this / afunction bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }?// (public) this % afunction bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }?// (public) [this/a,this%a]function bnDivideAndRemainder(a) { var q = nbi(), r = nbi(); this.divRemTo(a,q,r); return new Array(q,r);}?// (protected) this *= n, this >= 0, 1 < n < DVfunction bnpDMultiply(n) { this[this.t] = this.am(0,n-1,this,0,0,this.t); ++this.t; this.clamp();}?// (protected) this += n << w words, this >= 0function bnpDAddOffset(n,w) { while(this.t <= w) this[this.t++] = 0; this[w] += n; while(this[w] >= this.DV) { this[w] -= this.DV; if(++w >= this.t) this[this.t++] = 0; ++this[w]; }}?// A "null" reducerfunction NullExp() {}function nNop(x) { return x; }function nMulTo(x,y,r) { x.multiplyTo(y,r); }function nSqrTo(x,r) { x.squareTo(r); }?NullExp.prototype.convert = nNop;NullExp.prototype.revert = nNop;NullExp.prototype.mulTo = nMulTo;NullExp.prototype.sqrTo = nSqrTo;?// (public) this^efunction bnPow(e) { return this.exp(e,new NullExp()); }?// (protected) r = lower n words of "this * a", a.t <= n// "this" should be the larger one if appropriate.function bnpMultiplyLowerTo(a,n,r) { var i = Math.min(this.t+a.t,n); r.s = 0; // assumes a,this >= 0 r.t = i; while(i > 0) r[--i] = 0; var j; for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); r.clamp();}?// (protected) r = "this * a" without lower n words, n > 0// "this" should be the larger one if appropriate.function bnpMultiplyUpperTo(a,n,r) { --n; var i = r.t = this.t+a.t-n; r.s = 0; // assumes a,this >= 0 while(--i >= 0) r[i] = 0; for(i = Math.max(n-this.t,0); i < a.t; ++i) r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); r.clamp(); r.drShiftTo(1,r);}?// Barrett modular reductionfunction Barrett(m) { // setup Barrett this.r2 = nbi(); this.q3 = nbi(); BigInteger.ONE.dlShiftTo(2*m.t,this.r2); this.mu = this.r2.divide(m); this.m = m;}?function barrettConvert(x) { if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); else if(x.compareTo(this.m) < 0) return x; else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }}?function barrettRevert(x) { return x; }?// x = x mod m (HAC 14.42)function barrettReduce(x) { x.drShiftTo(this.m.t-1,this.r2); if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); x.subTo(this.r2,x); while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);}?// r = x^2 mod m; x != rfunction barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }?// r = x*y mod m; x,y != rfunction barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }?Barrett.prototype.convert = barrettConvert;Barrett.prototype.revert = barrettRevert;Barrett.prototype.reduce = barrettReduce;Barrett.prototype.mulTo = barrettMulTo;Barrett.prototype.sqrTo = barrettSqrTo;?// (public) this^e % m (HAC 14.85)function bnModPow(e,m) { var i = e.bitLength(), k, r = nbv(1), z; if(i <= 0) return r; else if(i < 18) k = 1; else if(i < 48) k = 3; else if(i < 144) k = 4; else if(i < 768) k = 5; else k = 6; if(i < 8) z = new Classic(m); else if(m.isEven()) z = new Barrett(m); else z = new Montgomery(m);? // precomputation var g = new Array(), n = 3, k1 = k-1, km = (1< 1) { var g2 = nbi(); z.sqrTo(g[1],g2); while(n <= km) { g[n] = nbi(); z.mulTo(g2,g[n-2],g[n]); n += 2; } }? var j = e.t-1, w, is1 = true, r2 = nbi(), t; i = nbits(e[j])-1; while(j >= 0) { if(i >= k1) w = (e[j]>>(i-k1))&km; else { w = (e[j]&((1<<(i+1))-1))<<(k1-i); if(j > 0) w |= e[j-1]>>(this.DB+i-k1); }? n = k; while((w&1) == 0) { w >>= 1; --n; } if((i -= n) < 0) { i += this.DB; --j; } if(is1) { ? // ret == 1, don"t bother squaring or multiplying it g[w].copyTo(r); is1 = false; } else { while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } z.mulTo(r2,g[w],r); }? while(j >= 0 && (e[j]&(1< 0) { x.rShiftTo(g,x); y.rShiftTo(g,y); } while(x.signum() > 0) { if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); if(x.compareTo(y) >= 0) { x.subTo(y,x); x.rShiftTo(1,x); } else { y.subTo(x,y); y.rShiftTo(1,y); } } if(g > 0) y.lShiftTo(g,y); return y;}?// (protected) this % n, n < 2^26function bnpModInt(n) { if(n <= 0) return 0; var d = this.DV%n, r = (this.s<0)?n-1:0; if(this.t > 0) if(d == 0) r = this[0]%n; else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; return r;}?// (public) 1/this % m (HAC 14.61)function bnModInverse(m) { var ac = m.isEven(); if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; var u = m.clone(), v = this.clone(); var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); while(u.signum() != 0) { while(u.isEven()) { u.rShiftTo(1,u); if(ac) { if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } a.rShiftTo(1,a); } else if(!b.isEven()) b.subTo(m,b); b.rShiftTo(1,b); } while(v.isEven()) { v.rShiftTo(1,v); if(ac) { if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } c.rShiftTo(1,c); } else if(!d.isEven()) d.subTo(m,d); d.rShiftTo(1,d); } if(u.compareTo(v) >= 0) { u.subTo(v,u); if(ac) a.subTo(c,a); b.subTo(d,b); } else { v.subTo(u,v); if(ac) c.subTo(a,c); d.subTo(b,d); } } if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; if(d.compareTo(m) >= 0) return d.subtract(m); if(d.signum() < 0) d.addTo(m,d); else return d; if(d.signum() < 0) return d.add(m); else return d;}?var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];var lplim = (1<<26)/lowprimes[lowprimes.length-1];?// (public) test primality with certainty >= 1-.5^tfunction bnIsProbablePrime(t) { var i, x = this.abs(); if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { for(i = 0; i < lowprimes.length; ++i) if(x[0] == lowprimes[i]) return true; return false; } if(x.isEven()) return false; i = 1; while(i < lowprimes.length) { var m = lowprimes[i], j = i+1; while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; m = x.modInt(m); while(i < j) if(m%lowprimes[i++] == 0) return false; } return x.millerRabin(t);}?// (protected) true if probably prime (HAC 4.24, Miller-Rabin)function bnpMillerRabin(t) { var n1 = this.subtract(BigInteger.ONE); var k = n1.getLowestSetBit(); if(k <= 0) return false; var r = n1.shiftRight(k); t = (t+1)>>1; if(t > lowprimes.length) t = lowprimes.length; var a = nbi(); for(var i = 0; i < t; ++i) { a.fromInt(lowprimes[i]); var y = a.modPow(r,this); if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { var j = 1; while(j++ < k && y.compareTo(n1) != 0) { y = y.modPowInt(2,this); if(y.compareTo(BigInteger.ONE) == 0) return false; } if(y.compareTo(n1) != 0) return false; } } return true;}?// protectedBigInteger.prototype.chunkSize = bnpChunkSize;BigInteger.prototype.toRadix = bnpToRadix;BigInteger.prototype.fromRadix = bnpFromRadix;BigInteger.prototype.fromNumber = bnpFromNumber;BigInteger.prototype.bitwiseTo = bnpBitwiseTo;BigInteger.prototype.changeBit = bnpChangeBit;BigInteger.prototype.addTo = bnpAddTo;BigInteger.prototype.dMultiply = bnpDMultiply;BigInteger.prototype.dAddOffset = bnpDAddOffset;BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;BigInteger.prototype.modInt = bnpModInt;BigInteger.prototype.millerRabin = bnpMillerRabin;?// publicBigInteger.prototype.clone = bnClone;BigInteger.prototype.intValue = bnIntValue;BigInteger.prototype.byteValue = bnByteValue;BigInteger.prototype.shortValue = bnShortValue;BigInteger.prototype.signum = bnSigNum;BigInteger.prototype.toByteArray = bnToByteArray;BigInteger.prototype.equals = bnEquals;BigInteger.prototype.min = bnMin;BigInteger.prototype.max = bnMax;BigInteger.prototype.and = bnAnd;BigInteger.prototype.or = bnOr;BigInteger.prototype.xor = bnXor;BigInteger.prototype.andNot = bnAndNot;BigInteger.prototype.not = bnNot;BigInteger.prototype.shiftLeft = bnShiftLeft;BigInteger.prototype.shiftRight = bnShiftRight;BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;BigInteger.prototype.bitCount = bnBitCount;BigInteger.prototype.testBit = bnTestBit;BigInteger.prototype.setBit = bnSetBit;BigInteger.prototype.clearBit = bnClearBit;BigInteger.prototype.flipBit = bnFlipBit;BigInteger.prototype.add = bnAdd;BigInteger.prototype.subtract = bnSubtract;BigInteger.prototype.multiply = bnMultiply;BigInteger.prototype.divide = bnDivide;BigInteger.prototype.remainder = bnRemainder;BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;BigInteger.prototype.modPow = bnModPow;BigInteger.prototype.modInverse = bnModInverse;BigInteger.prototype.pow = bnPow;BigInteger.prototype.gcd = bnGCD;BigInteger.prototype.isProbablePrime = bnIsProbablePrime;?// BigInteger interfaces not implemented in jsbn:?// BigInteger(int signum, byte[] magnitude)// double doubleValue()// float floatValue()// int hashCode()// long longValue()// static BigInteger valueOf(long val)????var RSAPublicKey = function($modulus_hex, $encryptionExponent_hex) { this.modulus = new BigInteger( $modulus_hex, 16); this.encryptionExponent = new BigInteger( $encryptionExponent_hex, 16);};?var Base64 = { base64: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=", encode: function($input) { if (!$input) { return false; } var $output = ""; var $chr1, $chr2, $chr3; var $enc1, $enc2, $enc3, $enc4; var $i = 0; do { $chr1 = $input.charCodeAt($i++); $chr2 = $input.charCodeAt($i++); $chr3 = $input.charCodeAt($i++); $enc1 = $chr1 >> 2; $enc2 = (($chr1 & 3) << 4) | ($chr2 >> 4); $enc3 = (($chr2 & 15) << 2) | ($chr3 >> 6); $enc4 = $chr3 & 63; if (isNaN($chr2)) $enc3 = $enc4 = 64; else if (isNaN($chr3)) $enc4 = 64; $output += this.base64.charAt($enc1) + this.base64.charAt($enc2) + this.base64.charAt($enc3) + this.base64.charAt($enc4); } while ($i < $input.length); return $output; }, decode: function($input) { if(!$input) return false; $input = $input.replace(/[^A-Za-z0-9/+///=]/g, ""); var $output = ""; var $enc1, $enc2, $enc3, $enc4; var $i = 0; do { $enc1 = this.base64.indexOf($input.charAt($i++)); $enc2 = this.base64.indexOf($input.charAt($i++)); $enc3 = this.base64.indexOf($input.charAt($i++)); $enc4 = this.base64.indexOf($input.charAt($i++)); $output += String.fromCharCode(($enc1 << 2) | ($enc2 >> 4)); if ($enc3 != 64) $output += String.fromCharCode((($enc2 & 15) << 4) | ($enc3 >> 2)); if ($enc4 != 64) $output += String.fromCharCode((($enc3 & 3) << 6) | $enc4); } while ($i < $input.length); return $output; }};?var Hex = { hex: "0123456789abcdef", encode: function($input) { if(!$input) return false; var $output = ""; var $k; var $i = 0; do { $k = $input.charCodeAt($i++); $output += this.hex.charAt(($k >> 4) &0xf) + this.hex.charAt($k & 0xf); } while ($i < $input.length); return $output; }, decode: function($input) { if(!$input) return false; $input = $input.replace(/[^0-9abcdef]/g, ""); var $output = ""; var $i = 0; do { $output += String.fromCharCode(((this.hex.indexOf($input.charAt($i++)) << 4) & 0xf0) | (this.hex.indexOf($input.charAt($i++)) & 0xf)); } while ($i < $input.length); return $output; }};?var RSA = {? getPublicKey: function( $modulus_hex, $exponent_hex ) { return new RSAPublicKey( $modulus_hex, $exponent_hex ); },? encrypt: function($data, $pubkey) { if (!$pubkey) return false; $data = this.pkcs1pad2($data,($pubkey.modulus.bitLength()+7)>>3); if(!$data) return false; $data = $data.modPowInt($pubkey.encryptionExponent, $pubkey.modulus); if(!$data) return false; $data = $data.toString(16); if(($data.length & 1) == 1) $data = "0" + $data; return Base64.encode(Hex.decode($data)); },? pkcs1pad2: function($data, $keysize) { if($keysize < $data.length + 11) return null; var $buffer = []; var $i = $data.length - 1; while($i >= 0 && $keysize > 0) $buffer[--$keysize] = $data.charCodeAt($i--); $buffer[--$keysize] = 0; while($keysize > 2) $buffer[--$keysize] = Math.floor(Math.random()*254) + 1; $buffer[--$keysize] = 2; $buffer[--$keysize] = 0; return new BigInteger($buffer); }};???OnAuthCodeResponse = function(results, password) { ? // var form = this.m_$LogonForm[0]; ? var pubKey = RSA.getPublicKey(results.publickey_mod, results.publickey_exp); ? // var username = this.m_strUsernameCanonical; ? // var password = form.elements["password"].value; ? password = password.replace(/[^/x00-/x7F]/g, ""); ? // remove non-standard-ASCII characters ? var encryptedPassword = RSA.encrypt(password, pubKey); ? return encryptedPassword};?console.log(OnAuthCodeResponse({"success": "True", "publickey_mod": "aef25caaaba051405eb6be0ee34e927aa7378248279345a5c9cdb4f873de605e81167608b3f8592b7692d592373dae0b3b8e878dbcb3c25dda0d83d8b0b5e5432e59d33210749537f596841b7bd989594e6109d2ab63aed23052b0667de72c22e64f2e09a55066bf861bcf24f79336e75caff55887409c695bdf232d846b9e73a89a2df20a28fb580a504188f4a9e16e759e7aa5f454ce6e03aebf998cbc6ed478c24069af6ee8e06954fb9748bc387d811bfb33bc8d00b5400134bcbb8e872be4e8e60924754c10c522539dd1feeebc71f36c3f1d0484a914b8cbfb9966b403923d98821f02de5ec5d3ffba0b022dbf7cbfcec3fb88278bee580fe8f40960f9", "publickey_exp": "010001", "timestamp": "133267600000", "token_gid": "27ddf868c7def6b4"}, "12345"))?// Gq8LwJWnpwJS438pSVx7qnOW0gGGAv7gZbZKmbQtVcww4wVqck0FPUYScf8IyBz7DIbNawHVrx4lShLCS2oOPqxKNV6IybKESkARGXV4TqiVHF36oXejbO89zFWop5JDBeZl1nbV2y99fbSqAx2P/oxt3lm33xebkwc42KJqK1sAHK+dZ8YVT1Ji9J3JNeTVZvoH/4I5oRkb2ai5DsURllQkGvut3b9eGx6MSumCTp0YCVGjE4oE9WSq8Gvq7sD7F8QNobfRGUKk1TvcYmeqwDtSTGQWascbAic7+/yKV0ej2AyHyIQ/nnUMWjI4HWDRAqxyAHKkB6mPFLKKJZiQLQ==
import time?import execjsimport requests??login_url = "https://store.steampowered.com/login/dologin/"get_rsa_key_url = "https://store.steampowered.com/login/getrsakey/"?headers = { ? ?"Host": "store.steampowered.com", ? ?"Origin": "https://store.steampowered.com", ? ?"Referer": "https://store.steampowered.com/login/?redir=&redir_ssl=1&snr=1_4_4__global-header", ? ?"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.71 Safari/537.36"}session = requests.session()?def get_rsa_key(username): ? ?data = { ? ? ? ?"donotcache": str(int(time.time() * 1000)), ? ? ? ?"username": username ? } ? ?response = session.post(url=get_rsa_key_url, data=data, headers=headers).json() ? ?print(response) ? ?return response??def get_encrypted_password(password, rsa_key_dict): ? ?f = open("steam.js", "r", encoding="utf-8") ? ?steampowered_js = f.read() ? ?f.close() ? ?encrypted_password = execjs.compile(steampowered_js).call("OnAuthCodeResponse", password, rsa_key_dict) ? ?return encrypted_password??def login(username, encrypted_password, rsa_key_dict): ? ?data = { ? ? ? ?"donotcache": str(int(time.time() * 1000)), ? ? ? ?"password": encrypted_password, ? ? ? ?"username": username, ? ? ? ?"twofactorcode": "", ? ? ? ?"emailauth": "", ? ? ? ?"loginfriendlyname": "", ? ? ? ?"emailsteamid": "", ? ? ? ?"rsatimestamp": rsa_key_dict["timestamp"], ? ? ? ?"remember_login": False, ? ? ? ?"tokentype": "-1" ? } ? ?print(data) ? ?response = session.post(url=login_url, data=data, headers=headers) ? ?print(response.text)??def main(): ? ?username = input("請輸入登錄賬號: ") ? ?password = input("請輸入登錄密碼: ")?? ? ?# 獲取 RSA 加密所需 key 等信息 ? ?rsa_key_dict = get_rsa_key(username)? ? ?# 獲取加密后的密碼 ? ?encrypted_password = get_encrypted_password(password, rsa_key_dict) ? ?# print(encrypted_password) ? ?# 攜帶 用戶名、加密后的密碼、cookies、驗證碼等登錄 ? ?login(username, encrypted_password, rsa_key_dict)??if __name__ == "__main__": ? ?main()
行業資料:添加即可領取PPT模板、簡歷模板、行業經典書籍PDF。
面試題庫:歷年經典,熱乎的大廠面試真題,持續更新中,添加獲取。
學習資料:含Python、爬蟲、數據分析、算法等學習視頻和文檔,添加獲取
交流加群:大佬指點迷津,你的問題往往有人遇到過,技術互助交流。
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。
轉載請注明本文地址:http://specialneedsforspecialkids.com/yun/122443.html
摘要:時間永遠都過得那么快,一晃從年注冊,到現在已經過去了年那些被我藏在收藏夾吃灰的文章,已經太多了,是時候把他們整理一下了。那是因為收藏夾太亂,橡皮擦給設置私密了,不收拾不好看呀。 ...
摘要:我發現抖音上很多小姐姐就拍個跳舞的視頻就火了,大家是沖著舞蹈水平去的嗎,都是沖著顏值身材去的,能刷到這篇文章的都是了,我就跟大家不一樣了,一個個刷太麻煩了,我直接爬下來看個夠,先隨意展示兩個。 我發現抖音上很多小姐姐就拍個跳舞的視頻就火了,大家是沖著舞蹈水平去的嗎,都是沖著顏值身材去的,能刷...
Steam是由美國網絡游戲商Valve于2003年9月12日上線的數字發行服務平臺,被稱之為電子計算機游戲圈最大的一個數碼科技發售服務平臺之首。本文運用Python即時獲得steam優惠游戲存檔,有興趣的話可以試一試 序言 Steam是由美國網絡游戲商Valve于2003年9月12日上線的數字發行服務平臺,被稱之為電子計算機游戲圈最大的一個數碼科技發售服務平臺之首,Steam網站是全球最大...
閱讀 3689·2021-10-13 09:40
閱讀 3149·2021-10-09 09:53
閱讀 3550·2021-09-26 09:46
閱讀 1848·2021-09-08 09:36
閱讀 4248·2021-09-02 09:46
閱讀 1314·2019-08-30 15:54
閱讀 3178·2019-08-30 15:44
閱讀 1022·2019-08-30 11:06