国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

Pygame實戰(zhàn):方塊連接世界,云游大好河山—《我的世界》已上線!確定不進來康康嘛?

icattlecoder / 3005人閱讀

摘要:導(dǎo)語我的世界是一款自由度極高的游戲,每個新存檔的開啟,就像是作為造物主的玩家在虛擬空間開辟了一個全新的宇宙。主題我的世界版本圖片效果圖如下。

導(dǎo)語

《我的世界》是一款自由度極高的游戲,每個新存檔的開啟,就像是作為造物主的玩家在虛擬空間開辟了一個全新的宇宙。

?

方塊連接世界,云游大好河山。

?

? ? ? 國慶不是回家了一趟嘛?隔壁家的小胖墩在跟家里的小孩子一起玩手機,一起下載 了這款《我的世界》的游戲,玩兒的可是非常起勁兒了,建房子打怪,別說那房子的模型著實蠻驚艷的哈!

?

至少我作為一個沒玩過的人來說確實是很牛逼了~至少我做不來哈哈哈!這游戲看著怪好玩兒的撒,小編沒忍住,畢竟長假嘛,怎得找點兒事情可做!

于是——今天木木子帶大家一起編寫的Python 1.0初級版本《我的世界》就要隆重出場了,期不期待吖~

正文

?

(1)《我是世界》游戲規(guī)則。

移動—前進:W,后退:S,向左:A,向右:D,環(huán)顧四周:鼠標,跳起:空格鍵,切換飛行模式:Tab。

選擇建筑材料—磚:1,草:2,沙子:3,刪除建筑:鼠標左鍵單擊,創(chuàng)建建筑塊:鼠標右鍵單擊。

ESC退出程序。

(2)主要程序代碼。

"""主題:我的世界1.0版本"""from __future__ import divisionimport sysimport mathimport randomimport timefrom collections import dequefrom pyglet import imagefrom pyglet.gl import *from pyglet.graphics import TextureGroupfrom pyglet.window import key, mouseTICKS_PER_SEC = 60# Size of sectors used to ease block loading.SECTOR_SIZE = 16WALKING_SPEED = 5FLYING_SPEED = 15GRAVITY = 20.0MAX_JUMP_HEIGHT = 1.0 # About the height of a block.# To derive the formula for calculating jump speed, first solve#    v_t = v_0 + a * t# for the time at which you achieve maximum height, where a is the acceleration# due to gravity and v_t = 0. This gives:#    t = - v_0 / a# Use t and the desired MAX_JUMP_HEIGHT to solve for v_0 (jump speed) in#    s = s_0 + v_0 * t + (a * t^2) / 2JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT)TERMINAL_VELOCITY = 50PLAYER_HEIGHT = 2if sys.version_info[0] >= 3:    xrange = rangedef cube_vertices(x, y, z, n):    """ Return the vertices of the cube at position x, y, z with size 2*n.    """    return [        x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n,  # top        x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n,  # bottom        x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n,  # left        x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n,  # right        x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n,  # front        x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n,  # back    ]def tex_coord(x, y, n=4):    """ Return the bounding vertices of the texture square.    """    m = 1.0 / n    dx = x * m    dy = y * m    return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + mdef tex_coords(top, bottom, side):    """ Return a list of the texture squares for the top, bottom and side.    """    top = tex_coord(*top)    bottom = tex_coord(*bottom)    side = tex_coord(*side)    result = []    result.extend(top)    result.extend(bottom)    result.extend(side * 4)    return resultTEXTURE_PATH = "texture.png"GRASS = tex_coords((1, 0), (0, 1), (0, 0))SAND = tex_coords((1, 1), (1, 1), (1, 1))BRICK = tex_coords((2, 0), (2, 0), (2, 0))STONE = tex_coords((2, 1), (2, 1), (2, 1))FACES = [    ( 0, 1, 0),    ( 0,-1, 0),    (-1, 0, 0),    ( 1, 0, 0),    ( 0, 0, 1),    ( 0, 0,-1),]def normalize(position):    """ Accepts `position` of arbitrary precision and returns the block    containing that position.    Parameters    ----------    position : tuple of len 3    Returns    -------    block_position : tuple of ints of len 3    """    x, y, z = position    x, y, z = (int(round(x)), int(round(y)), int(round(z)))    return (x, y, z)def sectorize(position):    """ Returns a tuple representing the sector for the given `position`.    Parameters    ----------    position : tuple of len 3    Returns    -------    sector : tuple of len 3    """    x, y, z = normalize(position)    x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE    return (x, 0, z)class Model(object):    def __init__(self):        # A Batch is a collection of vertex lists for batched rendering.        self.batch = pyglet.graphics.Batch()        # A TextureGroup manages an OpenGL texture.        self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture())        # A mapping from position to the texture of the block at that position.        # This defines all the blocks that are currently in the world.        self.world = {}        # Same mapping as `world` but only contains blocks that are shown.        self.shown = {}        # Mapping from position to a pyglet `VertextList` for all shown blocks.        self._shown = {}        # Mapping from sector to a list of positions inside that sector.        self.sectors = {}        # Simple function queue implementation. The queue is populated with        # _show_block() and _hide_block() calls        self.queue = deque()        self._initialize()    def _initialize(self):        """ Initialize the world by placing all the blocks.        """        n = 80  # 1/2 width and height of world        s = 1  # step size        y = 0  # initial y height        for x in xrange(-n, n + 1, s):            for z in xrange(-n, n + 1, s):                # create a layer stone an grass everywhere.                self.add_block((x, y - 2, z), GRASS, immediate=False)                self.add_block((x, y - 3, z), STONE, immediate=False)                if x in (-n, n) or z in (-n, n):                    # create outer walls.                    for dy in xrange(-2, 3):                        self.add_block((x, y + dy, z), STONE, immediate=False)        # generate the hills randomly        o = n - 10        for _ in xrange(120):            a = random.randint(-o, o)  # x position of the hill            b = random.randint(-o, o)  # z position of the hill            c = -1  # base of the hill            h = random.randint(1, 6)  # height of the hill            s = random.randint(4, 8)  # 2 * s is the side length of the hill            d = 1  # how quickly to taper off the hills            t = random.choice([GRASS, SAND, BRICK])            for y in xrange(c, c + h):                for x in xrange(a - s, a + s + 1):                    for z in xrange(b - s, b + s + 1):                        if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2:                            continue                        if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2:                            continue                        self.add_block((x, y, z), t, immediate=False)                s -= d  # decrement side lenth so hills taper off    def hit_test(self, position, vector, max_distance=8):        """ Line of sight search from current position. If a block is        intersected it is returned, along with the block previously in the line        of sight. If no block is found, return None, None.        Parameters        ----------        position : tuple of len 3            The (x, y, z) position to check visibility from.        vector : tuple of len 3            The line of sight vector.        max_distance : int            How many blocks away to search for a hit.        """        m = 8        x, y, z = position        dx, dy, dz = vector        previous = None        for _ in xrange(max_distance * m):            key = normalize((x, y, z))            if key != previous and key in self.world:                return key, previous            previous = key            x, y, z = x + dx / m, y + dy / m, z + dz / m        return None, None    def exposed(self, position):        """ Returns False is given `position` is surrounded on all 6 sides by        blocks, True otherwise.        """        x, y, z = position        for dx, dy, dz in FACES:            if (x + dx, y + dy, z + dz) not in self.world:                return True        return False    def add_block(self, position, texture, immediate=True):        """ Add a block with the given `texture` and `position` to the world.        Parameters        ----------        position : tuple of len 3            The (x, y, z) position of the block to add.        texture : list of len 3            The coordinates of the texture squares. Use `tex_coords()` to            generate.        immediate : bool            Whether or not to draw the block immediately.        """        if position in self.world:            self.remove_block(position, immediate)        self.world[position] = texture        self.sectors.setdefault(sectorize(position), []).append(position)        if immediate:            if self.exposed(position):                self.show_block(position)            self.check_neighbors(position)    def remove_block(self, position, immediate=True):        """ Remove the block at the given `position`.        Parameters        ----------        position : tuple of len 3            The (x, y, z) position of the block to remove.        immediate : bool            Whether or not to immediately remove block from canvas.        """        del self.world[position]        self.sectors[sectorize(position)].remove(position)        if immediate:            if position in self.shown:                self.hide_block(position)            self.check_neighbors(position)    def check_neighbors(self, position):        """ Check all blocks surrounding `position` and ensure their visual        state is current. This means hiding blocks that are not exposed and        ensuring that all exposed blocks are shown. Usually used after a block        is added or removed.        """        x, y, z = position        for dx, dy, dz in FACES:            key = (x + dx, y + dy, z + dz)            if key not in self.world:                continue            if self.exposed(key):                if key not in self.shown:                    self.show_block(key)            else:                if key in self.shown:                    self.hide_block(key)    def show_block(self, position, immediate=True):        """ Show the block at the given `position`. This method assumes the        block has already been added with add_block()        Parameters        ----------        position : tuple of len 3            The (x, y, z) position of the block to show.        immediate : bool            Whether or not to show the block immediately.        """        texture = self.world[position]        self.shown[position] = texture        if immediate:            self._show_block(position, texture)        else:            self._enqueue(self._show_block, position, texture)    def _show_block(self, position, texture):        """ Private implementation of the `show_block()` method.        Parameters        ----------        position : tuple of len 3            The (x, y, z) position of the block to show.        texture : list of len 3            The coordinates of the texture squares. Use `tex_coords()` to            generate.        """        x, y, z = position        vertex_data = cube_vertices(x, y, z, 0.5)        texture_data = list(texture)        # create vertex list        # FIXME Maybe `add_indexed()` should be used instead        self._shown[position] = self.batch.add(24, GL_QUADS, self.group,            ("v3f/static", vertex_data),            ("t2f/static", texture_data))    def hide_block(self, position, immediate=True):        """ Hide the block at the given `position`. Hiding does not remove the        block from the world.        Parameters        ----------        position : tuple of len 3            The (x, y, z) position of the block to hide.        immediate : bool            Whether or not to immediately remove the block from the canvas.        """        self.shown.pop(position)        if immediate:            self._hide_block(position)        else:            self._enqueue(self._hide_block, position)    def _hide_block(self, position):        """ Private implementation of the "hide_block()` method.        """        self._shown.pop(position).delete()    def show_sector(self, sector):        """ Ensure all blocks in the given sector that should be shown are        drawn to the canvas.        """        for position in self.sectors.get(sector, []):            if position not in self.shown and self.exposed(position):                self.show_block(position, False)    def hide_sector(self, sector):        """ Ensure all blocks in the given sector that should be hidden are        removed from the canvas.        """        for position in self.sectors.get(sector, []):            if position in self.shown:                self.hide_block(position, False)    def change_sectors(self, before, after):        """ Move from sector `before` to sector `after`. A sector is a        contiguous x, y sub-region of world. Sectors are used to speed up        world rendering.        """        before_set = set()        after_set = set()        pad = 4        for dx in xrange(-pad, pad + 1):            for dy in [0]:  # xrange(-pad, pad + 1):                for dz in xrange(-pad, pad + 1):                    if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2:                        continue                    if before:                        x, y, z = before                        before_set.add((x + dx, y + dy, z + dz))                    if after:                        x, y, z = after                        after_set.add((x + dx, y + dy, z + dz))        show = after_set - before_set        hide = before_set - after_set        for sector in show:            self.show_sector(sector)        for sector in hide:            self.hide_sector(sector)    def _enqueue(self, func, *args):        """ Add `func` to the internal queue.        """        self.queue.append((func, args))    def _dequeue(self):        """ Pop the top function from the internal queue and call it.        """        func, args = self.queue.popleft()        func(*args)    def process_queue(self):        """ Process the entire queue while taking periodic breaks. This allows        the game loop to run smoothly. The queue contains calls to        _show_block() and _hide_block() so this method should be called if        add_block() or remove_block() was called with immediate=False        """        start = time.clock()        while self.queue and time.clock() - start < 1.0 / TICKS_PER_SEC:            self._dequeue()    def process_entire_queue(self):        """ Process the entire queue with no breaks.        """        while self.queue:            self._dequeue()class Window(pyglet.window.Window):    def __init__(self, *args, **kwargs):        super(Window, self).__init__(*args, **kwargs)        # Whether or not the window exclusively captures the mouse.        self.exclusive = False        # When flying gravity has no effect and speed is increased.        self.flying = False        # Strafing is moving lateral to the direction you are facing,        # e.g. moving to the left or right while continuing to face forward.        #        # First element is -1 when moving forward, 1 when moving back, and 0        # otherwise. The second element is -1 when moving left, 1 when moving        # right, and 0 otherwise.        self.strafe = [0, 0]        # Current (x, y, z) position in the world, specified with floats. Note        # that, perhaps unlike in math class, the y-axis is the vertical axis.        self.position = (0, 0, 0)        # First element is rotation of the player in the x-z plane (ground        # plane) measured from the z-axis down. The second is the rotation        # angle from the ground plane up. Rotation is in degrees.        #        # The vertical plane rotation ranges from -90 (looking straight down) to        # 90 (looking straight up). The horizontal rotation range is unbounded.        self.rotation = (0, 0)        # Which sector the player is currently in.        self.sector = None        # The crosshairs at the center of the screen.        self.reticle = None        # Velocity in the y (upward) direction.        self.dy = 0        # A list of blocks the player can place. Hit num keys to cycle.        self.inventory = [BRICK, GRASS, SAND]        # The current block the user can place. Hit num keys to cycle.        self.block = self.inventory[0]        # Convenience list of num keys.        self.num_keys = [            key._1, key._2, key._3, key._4, key._5,            key._6, key._7, key._8, key._9, key._0]        # Instance of the model that handles the world.        self.model = Model()        # The label that is displayed in the top left of the canvas.        self.label = pyglet.text.Label("", font_name="Arial", font_size=18,            x=10, y=self.height - 10, anchor_x="left", anchor_y="top",            color=(0, 0, 0, 255))        # This call schedules the `update()` method to be called        # TICKS_PER_SEC. This is the main game event loop.        pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC)    def set_exclusive_mouse(self, exclusive):        """ If `exclusive` is True, the game will capture the mouse, if False        the game will ignore the mouse.        """        super(Window, self).set_exclusive_mouse(exclusive)        self.exclusive = exclusive    def get_sight_vector(self):        """ Returns the current line of sight vector indicating the direction        the player is looking.        """        x, y = self.rotation        # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and        # is 1 when looking ahead parallel to the ground and 0 when looking        # straight up or down.        m = math.cos(math.radians(y))        # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when        # looking straight up.        dy = math.sin(math.radians(y))        dx = math.cos(math.radians(x - 90)) * m        dz = math.sin(math.radians(x - 90)) * m        return (dx, dy, dz)    def get_motion_vector(self):        """ Returns the current motion vector indicating the velocity of the        player.        Returns        -------        vector : tuple of len 3            Tuple containing the velocity in x, y, and z respectively.        """        if any(self.strafe):            x, y = self.rotation            strafe = math.degrees(math.atan2(*self.strafe))            y_angle = math.radians(y)            x_angle = math.radians(x + strafe)            if self.flying:                m = math.cos(y_angle)                dy = math.sin(y_angle)                if self.strafe[1]:                    # Moving left or right.                    dy = 0.0                    m = 1                if self.strafe[0] > 0:                    # Moving backwards.                    dy *= -1                # When you are flying up or down, you have less left and right                # motion.                dx = math.cos(x_angle) * m                dz = math.sin(x_angle) * m            else:                dy = 0.0                dx = math.cos(x_angle)                dz = math.sin(x_angle)        else:            dy = 0.0            dx = 0.0            dz = 0.0        return (dx, dy, dz)    def update(self, dt):        """ This method is scheduled to be called repeatedly by the pyglet        clock.        Parameters        ----------        dt : float            The change in time since the last call.        """        self.model.process_queue()        sector = sectorize(self.position)        if sector != self.sector:            self.model.change_sectors(self.sector, sector)            if self.sector is None:                self.model.process_entire_queue()            self.sector = sector        m = 8        dt = min(dt, 0.2)        for _ in xrange(m):            self._update(dt / m)    def _update(self, dt):        """ Private implementation of the `update()` method. This is where most        of the motion logic lives, along with gravity and collision detection.        Parameters        ----------        dt : float            The change in time since the last call.        """        # walking        speed = FLYING_SPEED if self.flying else WALKING_SPEED        d = dt * speed # distance covered this tick.        dx, dy, dz = self.get_motion_vector()        # New position in space, before accounting for gravity.        dx, dy, dz = dx * d, dy * d, dz * d        # gravity        if not self.flying:            # Update your vertical speed: if you are falling, speed up until you            # hit terminal velocity; if you are jumping, slow down until you            # start falling.            self.dy -= dt * GRAVITY            self.dy = max(self.dy, -TERMINAL_VELOCITY)            dy += self.dy * dt        # collisions        x, y, z = self.position        x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT)        self.position = (x, y, z)    def collide(self, position, height):        """ Checks to see if the player at the given `position` and `height`        is colliding with any blocks in the world.        Parameters        ----------        position : tuple of len 3            The (x, y, z) position to check for collisions at.        height : int or float            The height of the player.        Returns        -------        position : tuple of len 3            The new position of the player taking into account collisions.        """        # How much overlap with a dimension of a surrounding block you need to        # have to count as a collision. If 0, touching terrain at all counts as        # a collision. If .49, you sink into the ground, as if walking through        # tall grass. If >= .5, you"ll fall through the ground.        pad = 0.25        p = list(position)        np = normalize(position)        for face in FACES:  # check all surrounding blocks            for i in xrange(3):  # check each dimension independently                if not face[i]:                    continue                # How much overlap you have with this dimension.                d = (p[i] - np[i]) * face[i]                if d < pad:                    continue                for dy in xrange(height):  # check each height                    op = list(np)                    op[1] -= dy                    op[i] += face[i]                    if tuple(op) not in self.model.world:                        continue                    p[i] -= (d - pad) * face[i]                    if face == (0, -1, 0) or face == (0, 1, 0):                        # You are colliding with the ground or ceiling, so stop                        # falling / rising.                        self.dy = 0                    break        return tuple(p)    def on_mouse_press(self, x, y, button, modifiers):        """ Called when a mouse button is pressed. See pyglet docs for button        amd modifier mappings.        Parameters        ----------        x, y : int            The coordinates of the mouse click. Always center of the screen if            the mouse is captured.        button : int            Number representing mouse button that was clicked. 1 = left button,            4 = right button.        modifiers : int            Number representing any modifying keys that were pressed when the            mouse button was clicked.        """        if self.exclusive:            vector = self.get_sight_vector()            block, previous = self.model.hit_test(self.position, vector)            if (button == mouse.RIGHT) or /                    ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)):                # ON OSX, control + left click = right click.                if previous:                    self.model.add_block(previous, self.block)            elif button == pyglet.window.mouse.LEFT and block:                texture = self.model.world[block]                if texture != STONE:                    self.model.remove_block(block)        else:            self.set_exclusive_mouse(True)    def on_mouse_motion(self, x, y, dx, dy):        """ Called when the player moves the mouse.        Parameters        ----------        x, y : int            The coordinates of the mouse click. Always center of the screen if            the mouse is captured.        dx, dy : float            The movement of the mouse.        """        if self.exclusive:            m = 0.15            x, y = self.rotation            x, y = x + dx * m, y + dy * m            y = max(-90, min(90, y))            self.rotation = (x, y)    def on_key_press(self, symbol, modifiers):        """ Called when the player presses a key. See pyglet docs for key        mappings.        Parameters        ----------        symbol : int            Number representing the key that was pressed.        modifiers : int            Number representing any modifying keys that were pressed.        """        if symbol == key.W:            self.strafe[0] -= 1        elif symbol == key.S:            self.strafe[0] += 1        elif symbol == key.A:            self.strafe[1] -= 1        elif symbol == key.D:            self.strafe[1] += 1        elif symbol == key.SPACE:            if self.dy == 0:                self.dy = JUMP_SPEED        elif symbol == key.ESCAPE:            self.set_exclusive_mouse(False)        elif symbol == key.TAB:            self.flying = not self.flying        elif symbol in self.num_keys:            index = (symbol - self.num_keys[0]) % len(self.inventory)            self.block = self.inventory[index]    def on_key_release(self, symbol, modifiers):        """ Called when the player releases a key. See pyglet docs for key        mappings.        Parameters        ----------        symbol : int            Number representing the key that was pressed.        modifiers : int            Number representing any modifying keys that were pressed.        """        if symbol == key.W:            self.strafe[0] += 1        elif symbol == key.S:            self.strafe[0] -= 1        elif symbol == key.A:            self.strafe[1] += 1        elif symbol == key.D:            self.strafe[1] -= 1    def on_resize(self, width, height):        """ Called when the window is resized to a new `width` and `height`.        """        # label        self.label.y = height - 10        # reticle        if self.reticle:            self.reticle.delete()        x, y = self.width // 2, self.height // 2        n = 10        self.reticle = pyglet.graphics.vertex_list(4,            ("v2i", (x - n, y, x + n, y, x, y - n, x, y + n))        )    def set_2d(self):        """ Configure OpenGL to draw in 2d.        """        width, height = self.get_size()        glDisable(GL_DEPTH_TEST)        viewport = self.get_viewport_size()        glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))        glMatrixMode(GL_PROJECTION)        glLoadIdentity()        glOrtho(0, max(1, width), 0, max(1, height), -1, 1)        glMatrixMode(GL_MODELVIEW)        glLoadIdentity()    def set_3d(self):        """ Configure OpenGL to draw in 3d.        """        width, height = self.get_size()        glEnable(GL_DEPTH_TEST)        viewport = self.get_viewport_size()        glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))        glMatrixMode(GL_PROJECTION)        glLoadIdentity()        gluPerspective(65.0, width / float(height), 0.1, 60.0)        glMatrixMode(GL_MODELVIEW)        glLoadIdentity()        x, y = self.rotation        glRotatef(x, 0, 1, 0)        glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))        x, y, z = self.position        glTranslatef(-x, -y, -z)    def on_draw(self):        """ Called by pyglet to draw the canvas.        """        self.clear()        self.set_3d()        glColor3d(1, 1, 1)        self.model.batch.draw()        self.draw_focused_block()        self.set_2d()        self.draw_label()        self.draw_reticle()    def draw_focused_block(self):        """ Draw black edges around the block that is currently under the        crosshairs.        """        vector = self.get_sight_vector()        block = self.model.hit_test(self.position, vector)[0]        if block:            x, y, z = block            vertex_data = cube_vertices(x, y, z, 0.51)            glColor3d(0, 0, 0)            glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)            pyglet.graphics.draw(24, GL_QUADS, ("v3f/static", vertex_data))            glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)    def draw_label(self):        """ Draw the label in the top left of the screen.        """        x, y, z = self.position        self.label.text = "%02d (%.2f, %.2f, %.2f) %d / %d" % (            pyglet.clock.get_fps(), x, y, z,            len(self.model._shown), len(self.model.world))        self.label.draw()    def draw_reticle(self):        """ Draw the crosshairs in the center of the screen.        """        glColor3d(0, 0, 0)        self.reticle.draw(GL_LINES)def setup_fog():    """ Configure the OpenGL fog properties.    """    # Enable fog. Fog "blends a fog color with each rasterized pixel fragment"s    # post-texturing color."    glEnable(GL_FOG)    # Set the fog color.    glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5, 0.69, 1.0, 1))    # Say we have no preference between rendering speed and quality.    glHint(GL_FOG_HINT, GL_DONT_CARE)    # Specify the equation used to compute the blending factor.    glFogi(GL_FOG_MODE, GL_LINEAR)    # How close and far away fog starts and ends. The closer the start and end,    # the denser the fog in the fog range.    glFogf(GL_FOG_START, 20.0)    glFogf(GL_FOG_END, 60.0)def setup():    """ Basic OpenGL configuration.    """    # Set the color of "clear", i.e. the sky, in rgba.    glClearColor(0.5, 0.69, 1.0, 1)    # Enable culling (not rendering) of back-facing facets -- facets that aren"t    # visible to you.    glEnable(GL_CULL_FACE)    # Set the texture minification/magnification function to GL_NEAREST (nearest    # in Manhattan distance) to the specified texture coordinates. GL_NEAREST    # "is generally faster than GL_LINEAR, but it can produce textured 圖片    # with sharper edges because the transition between texture elements is not    # as smooth."    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)    setup_fog()def main():    window = Window(width=1800, height=1600, caption="Pyglet", resizable=True)    # Hide the mouse cursor and prevent the mouse from leaving the window.    window.set_exclusive_mouse(True)    setup()    pyglet.app.run()if __name__ == "__main__":    main()

(3)效果圖如下。

正常的截圖:

?

飛行模式下的截圖:在天上越飛越遠!幸好我手速比較快,不然看不到這截圖了!

?總結(jié)

總的來說這初級版本的話很多毛病的哈!哈哈哈哈~大家拿到代碼了可以自己修改修改哦~

等一個大佬優(yōu)化這款Python的我的世界!

完整的免費源碼領(lǐng)取處:

如需完整的項目源碼+素材源碼基地見:#私信小編06#或者點擊藍色文字添加即可獲取免費的福利!

你們的支持是我最大的動力!!記得三連哦~mua?歡迎大家閱讀往期的文章哦~

往期熱門游戲文章推薦閱讀——

1.9?Pygame實戰(zhàn):慎點|虐單身狗的最高境界是…【附源碼】

2.0Pygame實戰(zhàn):利用Python實現(xiàn)智能五子棋,實現(xiàn)之后發(fā)現(xiàn)我玩不贏它!

1.2?Pygame實戰(zhàn):據(jù)說這是史上最難掃雷游戲,沒有之一!你們感受下......

1.3?Pygame實戰(zhàn):對象突然想玩坦克大戰(zhàn),我用Python三十分鐘實現(xiàn)!看!他開心的像個孩子!

文章匯總——

1.1Python—2021 |已有文章匯總 | 持續(xù)更新,直接看這篇就夠了~

?

文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請注明本文地址:http://specialneedsforspecialkids.com/yun/122434.html

相關(guān)文章

  • Pygame實戰(zhàn)】開心——消消樂,你樂,我樂,大家樂~

    摘要:正文開心消消樂分為二部分首先是開心然后是消消樂游戲嘛嘿嘿一開心小故事三則近視聰明的學(xué)生殺手二消消樂游戲素材圖片開心消消樂語音提示環(huán)境安裝本文是由寫的小游戲。 導(dǎo)語 你今天消消樂了嗎? ? 哈嘍哈嘍~木木子之前不是寫過一篇百變消消樂嘛? 可能你們不記得了,沒關(guān)系——今天重溫一下,來一篇開心?...

    changfeng1050 評論0 收藏0
  • Pygame實戰(zhàn)】嗷大喵歷險記之程序員吸貓指南:真的太上頭了~

    摘要:嗷大喵和他的小伙伴們快樂的生活在一起,他們總是能給大家?guī)須g樂。大家都說嗷大喵真棒。大家要做的就是解救嗷大喵遠離惡龍。 導(dǎo)語 哈嘍~大家好,我是木子,首先今天木子先給大家講個小故事: 在喵界有這樣一只網(wǎng)紅——混跡于二次元、表情包界,賤萌活潑,調(diào)皮機靈,白色的大圓臉,脖子 上系了個鈴鐺,年齡不...

    dreamans 評論0 收藏0
  • 大話 JavaScript 動畫

    摘要:直到年,世界上第一部動畫片滑稽臉的幽默相問世。上一次視神經(jīng)傳遞的圖像將會在大腦中存留,直到下一次神經(jīng)信號到達。移動設(shè)備還是相當慘烈,并沒有開始支持。市面上有很多動畫庫,大家可以開箱即用。有一些是針對操作的,也有一些是針對對象。 背景 138.2億年前,世界上沒有時間和空間,或許世界都不存在,在一個似有似無的點上,匯集了所有的物質(zhì),它孕育著無限的能量與可能性。 宇宙大爆炸 巨大的內(nèi)力已無...

    syoya 評論0 收藏0

發(fā)表評論

0條評論

最新活動
閱讀需要支付1元查看
<